Some geometric and functional inequalities related to lower dimensional subspaces

Ai-Jun Li

Zhejiang University of Science and Technology

27 June 2023 INdAM Meeting "CONVEX GEOMETRY - ANALYTIC ASPECTS"

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequality
000000000	000000	0000000	000000000000 / // / / //	000000000

Overview

- 2 The Khinchine type inequality
- **3** The lower bound of $g_{K,m,p}$
- 4 The properties of $C_{K,m,p}$ and $T_{K,m,p}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2 The Khinchine type inequality
- 3 The lower bound of $g_{K,m,p}$
- 4 The properties of $C_{K,m,p}$ and $T_{K,m,p}$
- 5 Zhang's inequality for lower dimensional subspaces

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
00000000	000000	0000000	000000000000	000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Notations

 A convex body K is a compact convex subset in the n-dimensional Euclidean space ℝⁿ.

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
000000000	000000	0000000	000000000000	000000000

- A convex body K is a compact convex subset in the *n*-dimensional Euclidean space \mathbb{R}^n .
- Support function: $h_{\mathcal{K}}(x) = \max\{x \cdot y : y \in \mathcal{K}\}$, where $x \cdot y$ is the inner product of $x, y \in \mathbb{R}^n$.

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
00000000	000000	0000000	000000000000	000000000

- A convex body K is a compact convex subset in the *n*-dimensional Euclidean space \mathbb{R}^n .
- Support function: h_K(x) = max{x ⋅ y : y ∈ K}, where x ⋅ y is the inner product of x, y ∈ ℝⁿ.
- Denote by Kⁿ the set of convex bodies in ℝⁿ and Kⁿ_o the subset of Kⁿ that convex bodies contain the origin in their interiors.

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
00000000	000000	0000000	000000000000	000000000

- A convex body K is a compact convex subset in the *n*-dimensional Euclidean space \mathbb{R}^n .
- Support function: h_K(x) = max{x ⋅ y : y ∈ K}, where x ⋅ y is the inner product of x, y ∈ ℝⁿ.
- Denote by Kⁿ the set of convex bodies in ℝⁿ and Kⁿ_o the subset of Kⁿ that convex bodies contain the origin in their interiors.
- If $K \in \mathcal{K}_{o}^{n}$, then the polar body K^{*} of K is defined by

$$\mathcal{K}^* = \{ x \in \mathbb{R}^n : x \cdot y \le 1 \quad \text{for all } y \in \mathcal{K} \}.$$

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
000000000	000000	0000000	000000000000	000000000

 A star body L in ℝⁿ is a compact star-shaped set about the origin (the intersection of every straight line through the origin with L is a line segment) whose radial function
 ρ_L(x) = max{λ ≥ 0 : λx ∈ L} for x ∈ ℝⁿ\{o} is positive and continuous.

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
000000000	000000	0000000	000000000000 / //	000000000

 A star body L in ℝⁿ is a compact star-shaped set about the origin (the intersection of every straight line through the origin with L is a line segment) whose radial function
 ρ_L(x) = max{λ ≥ 0 : λx ∈ L} for x ∈ ℝⁿ\{o} is positive and continuous.

• The Minkowski functional of L is defined by $||x||_L = \inf\{\lambda : x \in \lambda L\}$ for $x \in \mathbb{R}^n \setminus \{o\}$.

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequali
00000000	000000	0000000	000000000000 / //	000000000

- A star body L in ℝⁿ is a compact star-shaped set about the origin (the intersection of every straight line through the origin with L is a line segment) whose radial function
 ρ_L(x) = max{λ ≥ 0 : λx ∈ L} for x ∈ ℝⁿ\{o} is positive and continuous.
- The Minkowski functional of L is defined by $||x||_L = \inf\{\lambda : x \in \lambda L\}$ for $x \in \mathbb{R}^n \setminus \{o\}$.

• It is easy to see that for $K \in \mathcal{K}_o^n$,

$$\rho_K^{-1}(\cdot) = \|\cdot\|_K = h_{K^*}(\cdot).$$

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequali
00000000	000000	0000000	000000000000 / //	000000000

- A star body L in ℝⁿ is a compact star-shaped set about the origin (the intersection of every straight line through the origin with L is a line segment) whose radial function
 ρ_L(x) = max{λ ≥ 0 : λx ∈ L} for x ∈ ℝⁿ\{o} is positive and continuous.
- The Minkowski functional of L is defined by $||x||_L = \inf\{\lambda : x \in \lambda L\}$ for $x \in \mathbb{R}^n \setminus \{o\}$.

• It is easy to see that for $K \in \mathcal{K}_o^n$,

$$\rho_{K}^{-1}(\cdot) = \|\cdot\|_{K} = h_{K^{*}}(\cdot).$$

• Denote the set of star bodies in \mathbb{R}^n by \mathcal{S}_o^n .

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
000000000	000000	0000000	000000000000	000000000

• The Grassmann manifold $G_{n,m}$ of *m*-dimensional linear subspaces of \mathbb{R}^n is a compact homogeneous space with respect to the rotation group SO_n . It carries a unique rotation invariant probability measure, which we denote by $d\xi$.

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
000000000	000000	0000000	000000000000	000000000

• The Grassmann manifold $G_{n,m}$ of *m*-dimensional linear subspaces of \mathbb{R}^n is a compact homogeneous space with respect to the rotation group SO_n . It carries a unique rotation invariant probability measure, which we denote by $d\xi$.

• When m = 1 and m = n - 1, $G_{n,1}$ and $G_{n,n-1}$ can be identified as the hemisphere of the unit sphere S^{n-1} .

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequali
000000000	000000	0000000	000000000000	000000000

- The Grassmann manifold $G_{n,m}$ of *m*-dimensional linear subspaces of \mathbb{R}^n is a compact homogeneous space with respect to the rotation group SO_n . It carries a unique rotation invariant probability measure, which we denote by $d\xi$.
- When m = 1 and m = n 1, $G_{n,1}$ and $G_{n,n-1}$ can be identified as the hemisphere of the unit sphere S^{n-1} .
- Let P_ξ : ℝⁿ → ℝⁿ be the orthogonal projection map with range space ξ for ξ ∈ G_{n,m}, and | · | denote Lebesgue measure on the corresponding subspace. When not causing confusion, we also write |x| for the Euclidean norm of x in ξ ∈ G_{n,m}.

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
000000000	000000	0000000	000000000000	000000000

• Establishing geometric and functional inequalities related to lower dimensional subspaces is in general not easy.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequalit
000000000	000000	0000000	000000000000	000000000

- Establishing geometric and functional inequalities related to lower dimensional subspaces is in general not easy.
- The challenge is that the unit sphere S^{n-1} as a hypersurface of \mathbb{R}^n has a globally defined continuous normal vector field, while the Grassmann manifold $G_{n,m}$, 1 < m < n-1, does not have a similar property.

Overview	The Khinchine type inequality	The lower bound of $g_{K,m,p}$	The properties of $C_{K,m,p}$ and $T_{K,m,p}$	Zhang's inequality
000000000	000000	0000000	000000000000	000000000

- Establishing geometric and functional inequalities related to lower dimensional subspaces is in general not easy.
- The challenge is that the unit sphere S^{n-1} as a hypersurface of \mathbb{R}^n has a globally defined continuous normal vector field, while the Grassmann manifold $G_{n,m}$, 1 < m < n-1, does not have a similar property.
- "It is not at all clear what is the right body to associate with the function $G_{n,m} \ni \xi \rightarrow |P_{\xi}K|$, $K \in \mathcal{K}^n$, and in which space it should reside."— E. Milman [JAMS 2023]

The Blaschke-Santaló inequality

• However, the compactness of Grassmann manifolds ensures us to define the related functions on $G_{n,m}$, which inherit some good properties like the cases m = 1 and m = n - 1.

The Blaschke-Santaló inequality

- However, the compactness of Grassmann manifolds ensures us to define the related functions on $G_{n,m}$, which inherit some good properties like the cases m = 1 and m = n 1.
- For example, in order to establish the dual Grassmannian Loomis-Whitney inequality, the authors [L.-Xi-Huang, JLMS 2020] introduced a new functions $g_{K,m,p}$ on Grassmann manifolds, which is a generalization of the Minkowski functional of L_p centroid bodies.

The Blaschke-Santaló inequality

- However, the compactness of Grassmann manifolds ensures us to define the related functions on $G_{n,m}$, which inherit some good properties like the cases m = 1 and m = n 1.
- For example, in order to establish the dual Grassmannian Loomis-Whitney inequality, the authors [L.-Xi-Huang, JLMS 2020] introduced a new functions $g_{K,m,p}$ on Grassmann manifolds, which is a generalization of the Minkowski functional of L_p centroid bodies.
- The function $g_{K,m,p} : G_{n,m} \to (0,\infty)$ is defined by (up to a factor), for $K \in S_o^n$ and $\xi \in G_{n,m}$,

$$g_{K,m,p}(\xi) = \left(rac{1}{|K|}\int_{K}|\mathrm{P}_{\xi}z|^{p}dz
ight)^{rac{1}{p}}, \hspace{0.2cm} 0$$

The L_p -cosine transform

• When m = 1, the function $g_{K,m,p}$ reduces to the Minkowski functional of the polar L_p centroid body Γ_p^*K ; i.e., for $u \in S^{n-1}$,

$$\|u\|_{\Gamma_p^*K} = \left(\frac{1}{|K|}\int_K |u\cdot z|^p dz\right)^{\frac{1}{p}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The L_p -cosine transform

When m = 1, the function g_{K,m,p} reduces to the Minkowski functional of the polar L_p centroid body Γ^{*}_pK; i.e., for u ∈ Sⁿ⁻¹,

$$\|u\|_{\Gamma_p^*K} = \left(\frac{1}{|K|}\int_K |u\cdot z|^p dz\right)^{\frac{1}{p}}.$$

• A normalized definition of $\Gamma_p K$ was introduced by Lutwak and Zhang [J. Differential Geom. 1997]. When p = 1, $\Gamma_1 K$ is usually written as ΓK , which is the classical centroid body firstly defined and investigated by Blaschke.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The L_p -sine transform

• When m = n - 1, the function $g_{K,m,p}$ reduces to the Minkowski functional of the polar L_p sine centroid body $\wedge_p^* K$ [Huang-L.-Xi-Ye, JFA 2022]; i.e., for $u \in S^{n-1}$,

$$\|u\|_{\wedge_p^*K} = \left(\frac{1}{|K|}\int_K |\mathbf{P}_{u^\perp}z|^p dz\right)^{\frac{1}{p}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The L_p -sine transform

• The authors [L.-Xi-Huang, JLMS 2020] showed that the function $g_{K,m,p}$ is continuous on $G_{n,m}$ with respect to the spectral norm. Moreover, an upper bound of $g_{K,m,p}$ for origin-symmetric convex body K in terms of $|K \cap \xi^{\perp}|$ was also obtained, where $K \cap \xi^{\perp}$ is the intersection of K with the orthogonal complement of ξ .

OverviewThe Khinchine type inequalityThe lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality000

The L_p -sine transform

- The authors [L.-Xi-Huang, JLMS 2020] showed that the function $g_{K,m,p}$ is continuous on $G_{n,m}$ with respect to the spectral norm. Moreover, an upper bound of $g_{K,m,p}$ for origin-symmetric convex body K in terms of $|K \cap \xi^{\perp}|$ was also obtained, where $K \cap \xi^{\perp}$ is the intersection of K with the orthogonal complement of ξ .
- One aim of this talk is to continue the study of the properties of $g_{K,m,p}$. Firstly, we shall establish the following Khinchine type inequality (or the inverse Hölder inequality) for *m*-dimensional subspaces.

2 The Khinchine type inequality

3 The lower bound of $g_{K,m,p}$

4 The properties of $C_{K,m,p}$ and $T_{K,m,p}$

5 Zhang's inequality for lower dimensional subspaces

Khinchine type inequalities for lower dimensional subspaces

Theorem 1

Let $h : \mathbb{R}_+ \to \mathbb{R}_+$ be a decreasing function and let $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy $\Phi(0) = 0$ and be such that Φ and $\Phi(r)/r$ are increasing. Then for $\xi \in G_{n,m}$ and $L \in \mathcal{K}_o^m(\xi)$, we have

$$F(p) := \left(\frac{\int_{\xi} h(\Phi(\|x\|_{L})) \|x\|_{L}^{p} dx}{\int_{\xi} h(\|x\|_{L}) \|x\|_{L}^{p} dx}\right)^{\frac{1}{p+m}}$$

is a decreasing function of p on $(-m, +\infty)$ (provided the integrals in F(p) are well defined), that is,

$$F(q) \leq F(p), \quad q \geq p > -m,$$

with equality if and only if $\Phi(||x||_L) = ||x||_L/F(p)$ for each $x \in \xi$.

Khinchine type inequalities for lower dimensional subspaces

 The case m = 1 of Theorem 1 is due to Marshall, Olkin, and Proschan [1967], and a simpler proof was provided by Milman and Pajor [GAFA 1989].

Lemma. Let $h: \mathbb{R}_+ \to \mathbb{R}_+$ be a decreasing function and let $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ satisfying $\Phi(0) = 0$ and such that Φ and $\Phi(x)/x$ are increasing. Then

$$G(p) = \left(\frac{\int_0^\infty h(\Phi(x))x^p dx}{\int_0^\infty h(x)x^p dx}\right)^{1/(p+1)}$$

80

is a decreasing function of p on $]-1, +\infty[$ (provided the integrals in G(p) are well defined).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Khinchine type inequalities for lower dimensional subspaces

Let $h(t) = e^{-t}$. Then we have

Corollary 2

Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be a log-concave function (log f is concave) such that f(0) = 0. Then for $\xi \in G_{n,m}$ and $L \in \mathcal{K}_o^m(\xi)$, the function

$$\widetilde{F}(p) := \left(\frac{\int_{\xi} f(\|x\|_L) \|x\|_L^p dx}{\int_{\xi} e^{-\|x\|_L} \|x\|_L^p dx}\right)^{\frac{1}{p+m}}$$

is a decreasing function of p on $(-m, +\infty)$ (provided the integrals are well defined). In particular, the function

$$\overline{F}(p) := \left(\frac{1}{m\omega_m \Gamma(p+m)} \int_{\xi} f(|x|) |x|^p dx\right)^{\frac{1}{p+m}},$$

has the same monotonicity.

Khinchine type inequalities for lower dimensional subspaces

• By the identity

$$\int_{\mathcal{K}} \|\mathrm{P}_{\xi} z\|_{L}^{p} dz = \int_{\xi} \|x\|_{L}^{p} |\mathcal{K} \cap (x + \xi^{\perp})| dx,$$

we can get another form as follows.

Corollary 3

Let
$$K \in \mathcal{K}_o^n$$
, $\xi \in G_{n,m}$ and let $L \in \mathcal{K}_o^m(\xi)$. If $|K \cap \xi^{\perp}| = \max_{x \in \xi} |K \cap (x + \xi^{\perp})|$, then the function

$$\widehat{F}(p) := \left(\frac{\int_{K} \|\mathbf{P}_{\xi}z\|_{L}^{p} dz}{m|K \cap \xi^{\perp}||L|B(p+m,n-m+1)}\right)^{\frac{1}{p+n}}$$

is decreasing on $(-m, +\infty)$.

Khinchine type inequalities for lower dimensional subspaces

 The following upper bound of g_{K,m,p} established in [L.-Xi-Huang, JLMS 2020] is a direct consequence of Corollary 3.

Theorem 4, L.-Xi-Huang, JLMS 2020

If K is an origin-symmetric convex body in \mathbb{R}^n and $\xi \in G_{n,m}$, then for p > 0

$$g_{\mathcal{K},m,p}(\xi) \leq rac{|\mathcal{K}|^{rac{1}{m}}B(p+m,n-m+1)^{rac{1}{p}}}{(m\omega_m|\mathcal{K}\cap\xi^{\perp}|)^{rac{1}{m}}B(m,n-m+1)^{rac{1}{p}+rac{1}{m}}}.$$

When m = 1, there is equality if and only if K a double cone in the direction ξ .

- 2 The Khinchine type inequality
- 3 The lower bound of $g_{K,m,p}$
- ④ The properties of $C_{K,m,p}$ and $T_{K,m,p}$
- 5 Zhang's inequality for lower dimensional subspaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Overview The Khinchine type inequality The lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality occorrection of the properties of $C_{K,m,p}$ and $T_{K,m,p}$ and $T_{$

The lower bound of $g_{K,m,p}$

• The following lemma can be found in [Milman and Pajor, GAFA 1989].

Lemma 5

Let $f : \mathbb{R}^n \to (0, +\infty)$ be a measurable function such that $\|f\|_{\infty} = 1$ and let $K \in \mathcal{K}_o^n$. Then the function

$$H(p) = \left(\frac{n+p}{n|K|}\int_{\mathbb{R}^n} \|x\|_K^p f(x)dx\right)^{\frac{1}{n+p}}$$

is an increasing function of p on $(-n, +\infty)$. The equality H(p) = H(q) for $p \neq q$ holds if and only if f is the characteristic function of K.

The lower bound of $g_{K,m,p}$

 A direct consequence of Lemma 5 with n = m and f = φ_ξ(x)/φ_ξ(0), φ_ξ(x) = |K ∩ (x + ξ[⊥])|, is the following theorem.

Theorem 6

Let
$$p > 0$$
 and $K \in \mathcal{K}_o^n$. For $\xi \in G_{n,m}$, let $L \in \mathcal{K}_o^m(\xi)$. If $|K \cap \xi^{\perp}| = \max_{x \in \xi} |K \cap (x + \xi^{\perp})|$, then

$$\left(\frac{m+p}{m|K|}\int_{K}\|\mathbf{P}_{\xi}z\|_{L}^{p}dz\right)^{\frac{m}{p}} \geq \frac{|K|}{|L||K \cap \xi^{\perp}|},$$
(1)

with equality if and only if

$$|K \cap (x + \xi^{\perp})| = \begin{cases} |K \cap \xi^{\perp}|, & \text{if } x \in L; \\ 0, & \text{otherwise.} \end{cases}$$

The lower bound of $g_{K,m,p}$

When m = 1, L = [−1, 1], and K is a symmetric convex body in ℝⁿ, inequality (1) reduces to

$$\left(rac{1+p}{|\mathcal{K}|}\int_{\mathcal{K}}|z\cdot\xi|^{p}dz
ight)^{rac{1}{p}}\geq rac{|\mathcal{K}|}{2|\mathcal{K}\cap\xi^{\perp}|},\ \ \xi\in \mathit{G}_{n,1},$$

with equality if and only if K is a cylinder with height of 2 in the direction of ξ . This has been established by Milman and Pajor [GAFA 1989].

The lower bound of $g_{K,m,p}$

When m = 1, L = [−1, 1], and K is a symmetric convex body in ℝⁿ, inequality (1) reduces to

$$\left(\frac{1+p}{|K|}\int_{K}|z\cdot\xi|^{p}dz\right)^{\frac{1}{p}}\geq\frac{|K|}{2|K\cap\xi^{\perp}|}, \ \xi\in G_{n,1},$$

with equality if and only if K is a cylinder with height of 2 in the direction of ξ . This has been established by Milman and Pajor [GAFA 1989].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Theorems 6 and 4 immediately give the following two-sided inequality. The case m = 1 is due to Milman and Pajor.

The lower bound of $g_{K,m,p}$

Theorem 7

If K is an origin-symmetric convex body in \mathbb{R}^n and $\xi \in G_{n,m}$, then for p > 0,

$$c_1(m,p)\frac{|K|}{|K \cap \xi^{\perp}|} \leq \left(\frac{1}{|K|}\int_K |\mathrm{P}_{\xi}z|^p dz\right)^{\frac{m}{p}} \leq c_2(m,p)\frac{|K|}{|K \cap \xi^{\perp}|},$$

where

$$c_1(m,p) = rac{1}{\omega_m} \Big(rac{m}{m+p}\Big)^{rac{m}{p}}$$

and

$$c_2(m,p) = rac{B(p+m,n-m+1)^{rac{m}{p}}}{m\omega_m B(m,n-m+1)^{rac{m}{p}+1}}.$$

When m = 1, equality in the left (right)-hand inequality holds if and only if K is a cylinder (double cone).

▲□ > ▲□ > ▲目 > ▲目 > 目 のへで

The lower bound of $g_{K,m,p}$

• In particular, by letting $p \rightarrow 0$, we also have

Theorem 8

If K is an origin-symmetric convex body in \mathbb{R}^n and $\xi \in G_{n,m}$, then

$$\begin{split} \frac{e^{-1}}{\omega_m} \frac{|K|}{|K \cap \xi^{\perp}|} &\leq \exp\left\{\frac{m}{|K|} \int_{K} \ln |\mathbf{P}_{\xi} z| dz\right\} \\ &\leq \frac{|K|}{|K \cap \xi^{\perp}|} \frac{\exp\{(\sum_{k=1}^m \frac{m}{k} - 1)\}\gamma^{-m}}{m\omega_m B(m, n - m + 1)n^m}, \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where γ is the Euler constant.

OverviewThe Khinchine type inequalityThe lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality00

The lower bound of $g_{K,m,p}$

• As a consequence of Theorem 7 with p = 2, we have

Theorem 9

If K is an isotropic origin-symmetric convex body in \mathbb{R}^n , then for any $\xi_1, \xi_2 \in G_{n,m}$,

$$\frac{|K \cap \xi_1^{\perp}|}{|K \cap \xi_2^{\perp}|} \leq \binom{n}{m} \Big(\frac{(m+1)(m+2)}{(n+1)(n+2)}\Big)^{\frac{m}{2}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

OverviewThe Khinchine type inequalityThe lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality00

The lower bound of $g_{K,m,p}$

• As a consequence of Theorem 7 with p = 2, we have

Theorem 9

If K is an isotropic origin-symmetric convex body in \mathbb{R}^n , then for any $\xi_1, \xi_2 \in G_{n,m}$,

$$\frac{|K \cap \xi_1^{\perp}|}{|K \cap \xi_2^{\perp}|} \leq \binom{n}{m} \Big(\frac{(m+1)(m+2)}{(n+1)(n+2)}\Big)^{\frac{m}{2}}.$$

 We say that a star body K in ℝⁿ is isotropic with constant of isotropy L_K if |K| = 1 and

$$\int_{K} |z \cdot u|^2 dz = L_K^2,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for every $u \in S^{n-1}$.

1 Overview

- 2 The Khinchine type inequality
- 3 The lower bound of $g_{K,m,p}$
- 4 The properties of $C_{K,m,p}$ and $T_{K,m,p}$
- 5 Zhang's inequality for lower dimensional subspaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• The following definitons are the radial function of the radial p th mean body T_pK [Gardner and Zhang, Amer. J. Math. 1998] and the *p*-cross-section body C_pK [Gardner and Giannopoulos, Indiana Univ. Math. J. 1999]. For $u \in S^{n-1}$,

$$\rho_{\mathcal{T}_{p}\mathcal{K}}(u) = \left(\frac{1}{|\mathcal{K}|u^{\perp}|} \int_{\mathcal{K}|u^{\perp}} |\mathcal{K} \cap (l_{u} + y)|^{p} dy\right)^{\frac{1}{p}}, \quad 0$$

$$\rho_{C_pK}(u) = \left(\frac{1}{|K|}\int_K |K \cap (u^{\perp} + z)|^p dz\right)^{\frac{1}{p}}, \quad -1$$

The properties of $\widetilde{C}_{K,m,p}$ and $\widetilde{T}_{K,m,p}$

Overview

• Define the function $\widetilde{T}_{K,m,p}: G_{n,m} \to (0,\infty)$ by, for $K \in \mathcal{K}^n$ and $\xi \in G_{n,m}$,

$$egin{aligned} \widetilde{\mathcal{T}}_{\mathcal{K},m,
ho}(\xi) &= \Big(rac{1}{|\mathcal{K}|\xi|}\int_{\mathrm{int}\mathcal{K}|\xi}ig|\mathcal{K}\cap(\xi^{\perp}+y)ig|^{p}dy\Big)^{rac{1}{p}} \ &= \Big(rac{1}{|\mathcal{K}|\xi|}\int_{\xi}\int_{\xi^{\perp}}\mathbf{1}_{\mathrm{int}\mathcal{K}}(x,y)ig|\mathcal{K}\cap(\xi^{\perp}+y)ig|^{p-1}dxdy\Big)^{rac{1}{p}} \ &= \Big(rac{1}{|\mathcal{K}|\xi|}\int_{\mathrm{int}\mathcal{K}}ig|\mathcal{K}\cap(\xi^{\perp}+z)ig|^{p-1}dz\Big)^{rac{1}{p}}, \ \ 1\leq p<\infty, \end{aligned}$$

The Khinchine type inequality The lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality

$$\widetilde{T}_{K,m,\infty}(\xi) = \lim_{p \to \infty} \widetilde{T}_{K,m,p}(\xi) = \max_{y \in \operatorname{int} K | \xi} \left| K \cap (\xi^{\perp} + y) \right|$$

= $\max_{z \in \operatorname{int} K} \left| K \cap (\xi^{\perp} + z) \right|, \quad p = \infty.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• For $K \in \mathcal{K}^n$, denote by $\operatorname{int} K$ the interior of K. Define the function $\widetilde{C}_{K,m,p} : G_{n,m} \to (0,\infty)$ by

$$\widetilde{C}_{K,m,p}(\xi) = \Big(rac{1}{|K|}\int_{\mathrm{int}K} \left|K\cap(\xi^{\perp}+z)
ight|^p dz\Big)^{rac{1}{p}}, \ \ -1\leq p<\infty, p
eq 0$$

$$\begin{split} \widetilde{C}_{K,m,0}(\xi) &= \lim_{p \to 0} \widetilde{C}_{K,m,p}(\xi) = \exp\Big(\frac{1}{|K|} \int_{\mathrm{int}K} \log\big|K \cap (\xi^{\perp} + z)\big|dz\Big), \ p \\ \widetilde{C}_{K,m,\infty}(\xi) &= \lim_{p \to \infty} \widetilde{C}_{K,m,p}(\xi) = \max_{z \in \mathrm{int}K} \big|K \cap (\xi^{\perp} + z)\big|, \ p = \infty. \end{split}$$

The properties of $C_{K,m,p}$ and $T_{K,m,p}$

Theorem 10

The functions $\widetilde{T}_{K,m,p}$ and $\widetilde{C}_{K,m,p}$ are continuous on $G_{n,m}$ with respect to the spectral norm.

Theorem 11

Let
$$K \in \mathcal{K}^n$$
 and $\xi \in G_{n,m}$. For $\phi \in \mathrm{GL}(n)$,

$$\widetilde{C}_{\phi K,m,p}(\xi) = |\varepsilon_1| \cdots |\varepsilon_m| |\phi| \cdot \widetilde{C}_{K,m,p}(\phi^t \xi),$$

where $\varepsilon_1, \ldots, \varepsilon_m$ is a basis of ξ such that $\phi^t \varepsilon_1, \ldots, \phi^t \varepsilon_m$ is an orthonormal basis of $\phi^t \xi$. In particular, for $O \in O(n)$,

$$\widetilde{C}_{OK,m,p}(\xi) = \widetilde{C}_{K,m,p}(O^t\xi).$$

The Khinchine type inequality The lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequalit Overview

The properties of $C_{K,m,p}$ and $\overline{T}_{K,m,p}$

Theorem 12

Let $K \in \mathcal{K}^n$ and $\xi \in G_{n,m}$. For $\phi \in \mathrm{GL}(n)$,

$$\widetilde{T}_{\phi K,m,p}(\xi) = \frac{\left(|\varepsilon_1|\cdots|\varepsilon_m||\phi|\right)^{1-\frac{1}{p}}}{\left[\phi^{-1}u_1,\ldots,\phi^{-1}u_{n-m}\right]^{\frac{1}{p}}}\widetilde{T}_{K,m,p}(\phi^t\xi),$$

where u_1, \ldots, u_{n-m} is an orthonormal basis of ξ^{\perp} and $\varepsilon_1, \ldots, \varepsilon_m$ is a basis of ξ such that $\phi^t \varepsilon_1, \ldots, \phi^t \varepsilon_m$ is an orthonormal basis of $\phi^t \xi$. In particular, for $O \in O(n)$,

$$\widetilde{T}_{OK,m,p}(\xi) = \widetilde{T}_{K,m,p}(O^t\xi).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

• Define the function $T_{K,m,p}:G_{n,m}
ightarrow (0,\infty)$ by

$$\mathcal{T}_{\mathcal{K},m,p}(\xi) = \Big(rac{1}{|\mathcal{K}|\xi|}\int_{\mathcal{K}|\xi} ig|\mathcal{K}\cap (\xi^{\perp}+y)ig|^p dy\Big)^{rac{1}{p}}, \ \ 1\leq p<\infty,$$

$$egin{aligned} T_{\mathcal{K},m,\infty}(\xi) &= \lim_{p o \infty} T_{\mathcal{K},m,p}(\xi) = \max_{y \in \mathcal{K} \mid \xi} \left| \mathcal{K} \cap (\xi^{\perp} + y)
ight| \ &= \max_{z \in \mathcal{K}} \left| \mathcal{K} \cap (\xi^{\perp} + z)
ight|, \ \ p = \infty. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

OverviewThe Khinchine type inequalityThe lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality00000000000000000000000000000000000000

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

• Define the function $C_{\mathcal{K},m,p}:G_{n,m}
ightarrow(0,\infty)$ by

$$\mathcal{C}_{\mathcal{K},m,p}(\xi)=\Big(rac{1}{|\mathcal{K}|}\int_{\mathcal{K}}\big|\mathcal{K}\cap(\xi^{\perp}\!+\!z)\big|^pdz\Big)^{rac{1}{p}},\ -1\leq p<\infty,\ p
eq 0,$$

$$C_{K,m,0}(\xi) = \lim_{p \to 0} C_{K,m,p}(\xi) = \exp\left(\frac{1}{|K|} \int_{K} \log |K \cap (\xi^{\perp} + z)| dz\right), \quad p = C_{K,m,\infty}(\xi) = \lim_{p \to \infty} C_{K,m,p}(\xi) = \max_{z \in K} |K \cap (\xi^{\perp} + z)|, \quad p = \infty.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

OverviewThe Khinchine type inequalityThe lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality00000000000000000000000000000000000000

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

• The functions $T_{K,m,p}$ and $C_{K,m,p}$ are both monotonically increasing with respect to p. (The pth mean is increasing with respect to p.)

Theorem 13

Let
$$K \in \mathcal{K}^n$$
 and $\xi \in G_{n,m}$. Then

$$\frac{|K|}{|K|\xi|} \le T_{K,m,p}(\xi) \le T_{K,m,q}(\xi) \le \max_{z \in K} |K \cap (\xi^{\perp} + z)|, \quad 1 \le p \le q.$$
(2)

and

$$\frac{|K|}{|K|\xi|} \le C_{K,m,p}(\xi) \le C_{K,m,q}(\xi) \le \max_{z \in K} |K \cap (\xi^{\perp} + z)|, \quad -1 \le p \le q,$$
(3)

Equality holds in each inequality in (2) and (3) if and only if K is the Minkowski sum of an *m*-dimensional convex body contained in ξ and an (n - m)-dimensional convex body contained in ξ^{\perp} .

naa

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

A well-known result by Berwald [Acta Math. 1947] (reverse inequalities of the *p*th mean) implies the following inequalities.

Theorem 14

Let
$$K \in \mathcal{K}^n$$
 and $\xi \in G_{n,m}$. Then for $\frac{1}{n-m} \leq p \leq q$,

$$egin{aligned} \max_{z\in K} |K\cap (\xi^{\perp}+z)| &\leq inom{m+qn-qm}{m}^{rac{1}{q}} T_{K,m,q}(\xi) \ &\leq inom{m+pn-pm}{m}^{rac{1}{p}} T_{K,m,p}(\xi) &\leq inom{n}{m}rac{|K|}{|K|\xi|}. \end{aligned}$$

Equality holds in each inequality if and only if $|K \cap (\xi^{\perp} + y)|^{\frac{1}{n-m}}$ is an affine function of y on $K|\xi$.

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

• To establish the reverse inequalities of $C_{K,m,p}$, the following lemma proved by Borell [Math. Ann. 1973] will be needed.

Lemma 15

Let f be a positive and concave function on a convex body L in $\mathbb{R}^m.$ Then the function

$$\psi(p) = \prod_{i=1}^{m} (i+p) \int_{L} f(x)^{p} dx$$

is log concave for p > 0. Moreover, log ψ is linear in an interval $[p_0, p_1]$ if and only if f is a roof function over a point in L.

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

• To establish the reverse inequalities of $C_{K,m,p}$, the following lemma proved by Borell [Math. Ann. 1973] will be needed.

Lemma 15

Let f be a positive and concave function on a convex body L in $\mathbb{R}^m.$ Then the function

$$\psi(p) = \prod_{i=1}^{m} (i+p) \int_{L} f(x)^{p} dx$$

is log concave for p > 0. Moreover, log ψ is linear in an interval $[p_0, p_1]$ if and only if f is a roof function over a point in L.

• For $\tau > 0$ and $x_0 \in K \in \mathcal{K}^n$, the roof function on K with height τ over $x_0 \in K$ is a function $r_{\tau,x_0}(\cdot) : K \to [0, +\infty)$ such that the graph of r_{τ,x_0} in \mathbb{R}^{n+1} is a hyper cone with basis Kand height τ , such that the projection of the vertex is $x_0 \in K$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

By Lemma 15, we have

Lemma 16

Let n > m and let f be a positive and concave function on a convex body L in \mathbb{R}^m . Then the function

$$\Psi(p) = \left(\frac{\prod_{i=1}^{m}(i+(n-m)(p+1))}{\prod_{i=1}^{m}(i+(n-m))}\frac{\int_{L}f(x)^{(n-m)(p+1)}dx}{\int_{L}f(x)^{n-m}dx}\right)^{\frac{1}{p}}$$

is decreasing for p > -1, with equality if and only if f is a roof function over a point in L.

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

By Lemma 15, we have

Lemma 16

Let n > m and let f be a positive and concave function on a convex body L in \mathbb{R}^m . Then the function

$$\Psi(p) = \left(\frac{\prod_{i=1}^{m}(i+(n-m)(p+1))}{\prod_{i=1}^{m}(i+(n-m))}\frac{\int_{L}f(x)^{(n-m)(p+1)}dx}{\int_{L}f(x)^{n-m}dx}\right)^{\frac{1}{p}}$$

is decreasing for p > -1, with equality if and only if f is a roof function over a point in L.

• The case m = 1 is due to Gardner and Giannopoulos Indiana Univ. Math. J. 1999].

Overview

The Khinchine type inequality The lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The monotonicities of $C_{K,m,p}$ and $T_{K,m,p}$

Theorem 17

Let $K \in \mathcal{K}^n$ and $\xi \in G_{n,m}$. Then for $-1 \leq p \leq q$,

$$egin{aligned} \max_{z\in\mathcal{K}}|K\cap(\xi^{\perp}+z)|&\leqlpha_{n,m,q}\mathcal{C}_{\mathcal{K},m,q}(\xi)\leqlpha_{n,m,p}\mathcal{C}_{\mathcal{K},m,p}(\xi)\ &\leq inom{n}{m}rac{|\mathcal{K}|}{|\mathcal{K}|\xi|}. \end{aligned}$$

Equality holds in each inequality if and only if $|K \cap (\xi^{\perp} + y)|^{\frac{1}{n-m}}$ is an affine function of y on $K|\xi$.

- 2 The Khinchine type inequality
- 3 The lower bound of $g_{K,m,p}$
- ④ The properties of $C_{K,m,p}$ and $T_{K,m,p}$
- 5 Zhang's inequality for lower dimensional subspaces

Zhang's inequality for lower dimensional subspaces

Let K ∈ Kⁿ, ξ ∈ G_{n,m}, and let L ∈ K^m_o(ξ). For x ∈ ξ, define the restricted plane projection function A_K(||x||_L,ξ) of K as

 $A_{\mathcal{K}}(\|x\|_{L},\xi) = \left| \left\{ \xi^{\perp} \cap (\xi+y) : |\mathcal{K} \cap (\xi+y)|^{\frac{1}{m}} \geq \|x\|_{L} \text{ for all } y \in \xi^{\perp} \right\} \right|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Zhang's inequality for lower dimensional subspaces

Let K ∈ Kⁿ, ξ ∈ G_{n,m}, and let L ∈ K^m_o(ξ). For x ∈ ξ, define the restricted plane projection function A_K(||x||_L,ξ) of K as

$$A_{K}(\|x\|_{L},\xi)=\left|\left\{\xi^{\perp}\cap(\xi{+}y):|K\cap(\xi{+}y)|^{\frac{1}{m}}\geq\|x\|_{L} \text{ for all } y\in\xi^{\perp}\right\}\right|$$

• It is easy to see that $A_{\mathcal{K}}(||x||_{L},\xi) = 0$ if $||x||_{L} > \sigma(\xi)$ and $\xi^{\perp} \cap (\xi + y)$ is a convex body in ξ^{\perp} if $||x||_{L} < \sigma(\xi)$, where

$$\sigma(\xi) = \max\left\{|K \cap (\xi + y)|^{\frac{1}{m}} : y \in \xi^{\perp}\right\}.$$

Lemma 18

The function $A_{\mathcal{K}}(\|x\|_{L},\xi)^{\frac{1}{n-m}}$ is concave with respect to the variable $\|x\|_{L}$ on $\Omega := \{\|x\|_{L} : A_{\mathcal{K}}(\|x\|_{L},\xi) \neq 0\}, x \in \xi.$

Zhang's inequality for lower dimensional subspaces

• The case m = 1 is called the restricted chord projection function introduced by Zhang [Geom. Dedicata 1991].

214 ZHANG GAOYONG

1. RESTRICTED CHORD PROJECTION OF CONVEX BODIES

In *n*-dimensional Euclidean space \mathbb{R}^n , let K be a convex body and Σ a hyperplane through the origin. Denote by G any straight line intersecting K. For $\sigma \ge 0$, define

 $K'_{\Sigma}(\sigma) = \{ \Sigma \cap G : \Sigma \perp G, |G \cap K| \ge \sigma \}.$

 $K'_{\Sigma}(\sigma)$ is called the restricted chord projection over chord σ of the convex body K on the hyperplane Σ . It can be shown that $K'_{\Sigma}(\sigma)$ is convex. Obviously, $K'_{\Sigma}(0)$ is the common orthogonal projection.

The (n-1)-dimensional volume of $K'_{\Sigma}(\sigma)$ in Σ is denoted by $A_K(\sigma, u)$, here u is the unit normal vector of Σ , $A_K(\sigma, u)$ is called the restricted chord projection function of K. It is easy to see that $A_K(\sigma, u) = 0$ if $\sigma > \sigma(u)$ and $K'_{\Sigma}(\sigma)$ is a convex body in Σ if $\sigma < \sigma(u)$, where $\sigma(u)$ is the maximal chord of K in direction u, i.e.

$$\sigma(u) = \max_{G} \{ \sigma : \sigma = |G \cap K|, \ G \perp \Sigma \}.$$

Zhang's inequality for lower dimensional subspaces

For $K \in \mathcal{K}^n$, let G be a random *m*-dimensional plane intersecting K defined by, for $\xi \in G_{n,m}$,

$$G = \{\xi + y : K \cap (\xi + y) \neq \emptyset, y \in \xi^{\perp}\}.$$

Denote by dG the density of G under the group of translations. The integral for the power λ of the planes of K is defined as

$$I_{\lambda,m}(K) = \int_{K \cap G
eq \emptyset} |K \cap G|^{\lambda} dG, \ \lambda > 0.$$

See the books [Ren, Santaló]. The well-known Crofton-Hadwiger formula says

$$I_{n+1,1}(K) = \frac{n(n+1)}{2}|K|^2.$$

A D N A 目 N A E N A E N A B N A C N

The Khinchine type inequality The lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Zhang's inequality for lower dimensional subspaces

Lemma 19

Let $K \in \mathcal{K}^n$, $\xi \in G_{n,m}$, and let $L \in \mathcal{K}_{\alpha}^m(\xi)$. Then

$$I_{\lambda,m}(K) = \frac{\lambda |G_{n,m}|}{m|L|} \int_{G_{n,m}} \int_{\xi} \|x\|_L^{\lambda-m} A_K(\|x\|_L,\xi) dx d\xi,$$

where

$$|G_{n,m}| = \binom{n}{m} \frac{\omega_n \cdots \omega_{n-m+1}}{\omega_m \cdots \omega_1}$$

In particular,

$$I_{1,m}(K) = |K||G_{n,m}|.$$

The Khinchine type inequality The lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Overview

Zhang's inequalit

Zhang's inequality for lower dimensional subspaces

By Lemma 18, Lemma 19, and Theorem 1, we have

Theorem 20

Let $K \in \mathcal{K}^n$, $\xi \in G_{n,m}$, and let $L \in \mathcal{K}^m_o(\xi)$. Then, for p > m, $I_{p,m}(K)$ $\leq c_{n,m,p}'|L|^{-\frac{p}{m}}|G_{n,m}|\int_{G_{n,m}}A_{K}(0,\xi)^{\frac{m-p}{m}}\left(\int_{\mathcal{E}}A_{K}(\|x\|_{L},\xi)dx\right)^{\frac{p}{m}}d\xi,$ (4)

where $c'_{n,m,p} = pm^{-\frac{p}{m}}B(p, n-m+1)B(m, n-m+1)^{-\frac{p}{m}}$. Equality in (4) holds if and only if

$$\int_{\xi} A_{\mathcal{K}}(\|x\|_{L},\xi) dx = m|L|\sigma(\xi)^{m} A_{\mathcal{K}}(0,\xi) B(m,n-m+1).$$
 (5)

The Khinchine type inequality The lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality Overview

Zhang's inequality for lower dimensional subspaces

If p = n + m, then we have

Theorem 21
Let
$$K \in \mathcal{K}^n$$
, $\xi \in G_{n,m}$, and let $L \in \mathcal{K}_o^m(\xi)$. Then
 $I_{n+m,m}(K)$
 $\leq c'_{n,m}|L|^{-\frac{n+m}{m}}|G_{n,m}|\int_{G_{n,m}}A_K(0,\xi)^{-\frac{n}{m}}\left(\int_{\xi}A_K(||x||_L,\xi)dx\right)^{\frac{n+m}{m}}d\xi.$
(6)
where
 $c'_{n,m} = (n+m)m^{-\frac{n+m}{m}}B(n+m,n-m+1)B(m,n-m+1)^{-\frac{n+m}{m}}.$

Equality in (6) holds if and only if (5) holds.

When m = 1 and $L = B_2^n$, the above theorem immediately recovers Zhang's inequality [Geom. Dedicata 1991].

Zhang's inequalit

Zhang's inequality

Let $K \in \mathcal{K}^n$. Then

$$|K||\Pi^*K| \ge \frac{(2n)!}{n^n(n!)^2},$$

with equality if and only if K is a simplex.

OverviewThe Khinchine type inequalityThe lower bound of $g_{K,m,p}$ The properties of $C_{K,m,p}$ and $T_{K,m,p}$ Zhang's inequality000

Thanks for your attention!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@