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Notations

@ A convex body K is a compact convex subset in the
n-dimensional Euclidean space R”".

@ Support function: hx(x) = max{x-y:y € K}, where x - y is
the inner product of x,y € R".

@ Denote by K" the set of convex bodies in R"” and K] the

subset of X7 that convex bodies contain the origin in their
interiors.

e If K € K7, then the polar body K* of K is defined by

K'={xeR":x-y<1 forallyeK}.
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Notations

@ A star body L in R” is a compact star-shaped set about the
origin (the intersection of every straight line through the
origin with L is a line segment) whose radial function
pr(x) = max{\ > 0: Ax € L} for x € R"\{o} is positive and
continuous.

@ The Minkowski functional of L is defined by
Ix|le = inf{\: x € AL} for x € R"\{o}.

@ It is easy to see that for K € K7,

P () =11 Ik = b))

@ Denote the set of star bodies in R" by SJ.



Overview
000800000

Notations

@ The Grassmann manifold G, , of m-dimensional linear
subspaces of R” is a compact homogeneous space with
respect to the rotation group SO,. It carries a unique rotation
invariant probability measure, which we denote by d¢.



Overview
000800000

Notations

@ The Grassmann manifold G, , of m-dimensional linear
subspaces of R” is a compact homogeneous space with
respect to the rotation group SO,. It carries a unique rotation
invariant probability measure, which we denote by d¢.

@ When m=1and m=n—1, G,1 and G, ,—1 can be
identified as the hemisphere of the unit sphere S"71.



Overview
000800000

Notations

@ The Grassmann manifold G, , of m-dimensional linear
subspaces of R” is a compact homogeneous space with
respect to the rotation group SO,. It carries a unique rotation
invariant probability measure, which we denote by d¢.

@ When m=1and m=n—1, G,1 and G, ,—1 can be
identified as the hemisphere of the unit sphere S"71.

o Let P¢: R" — R" be the orthogonal projection map with
range space & for £ € G, and | - | denote Lebesgue measure
on the corresponding subspace. When not causing confusion,
we also write |x| for the Euclidean norm of x in £ € G, .
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Notations

@ Establishing geometric and functional inequalities related to
lower dimensional subspaces is in general not easy.

@ The challenge is that the unit sphere S"~! as a hypersurface
of R" has a globally defined continuous normal vector field,
while the Grassmann manifold G, m, 1 < m < n—1, does not
have a similar property.

@ "It is not at all clear what is the right body to associate with
the function G, m 3 { — |P¢K|, K € K", and in which space
it should reside.”— E. Milman [JAMS 2023]
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The Blaschke-Santalé inequality

@ However, the compactness of Grassmann manifolds ensures us
to define the related functions on G, m, which inherit some
good properties like the cases m=1and m=n— 1.

@ For example, in order to establish the dual Grassmannian
Loomis-Whitney inequality, the authors [L.-Xi-Huang, JLMS
2020] introduced a new functions gk m p on Grassmann
manifolds, which is a generalization of the Minkowski
functional of L, centroid bodies.

@ The function gk mp : Gn,m — (0,00) is defined by (up to a
factor), for K € 87 and £ € Gp.m,

1 1
gK,m,p(g) = <‘K|/K ’P£Z|pdz>p, 0< p < oo.
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The L,-cosine tra nsform

@ When m = 1, the function g m , reduces to the Minkowski
functional of the polar L, centroid body F;K; i.e., for

ueSn1
1 :
ik = (= . z|Pdz)"”.
lullrx (|K|/K'“ zlPdz)

@ A normalized definition of I',K was introduced by Lutwak and
Zhang [J. Differential Geom. 1997]. When p=1, 1K is
usually written as I' K, which is the classical centroid body
firstly defined and investigated by Blaschke.
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The L,-sine transform

@ When m = n — 1, the function gk m, reduces to the
Minkowski functional of the polar L, sine centroid body ALK
[Huang-L.-Xi-Ye, JFA 2022]; i.e., for u € S"71,

1 1
w=(— [P Pd)”.
ol = (g7 [ IPus2loez
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@ The authors [L.-Xi-Huang, JLMS 2020] showed that the
function gk mp is continuous on G, , with respect to the
spectral norm. Moreover, an upper bound of gy m , for
origin-symmetric convex body K in terms of |K N &+ was also
obtained, where K N &7 is the intersection of K with the
orthogonal complement of &.
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The L,-sine transform

@ The authors [L.-Xi-Huang, JLMS 2020] showed that the
function gk mp is continuous on G, , with respect to the
spectral norm. Moreover, an upper bound of gy m , for
origin-symmetric convex body K in terms of |K N &+ was also
obtained, where K N &7 is the intersection of K with the
orthogonal complement of &.

@ One aim of this talk is to continue the study of the properties
of gk mp- Firstly, we shall establish the following Khinchine
type inequality (or the inverse Holder inequality) for
m-dimensional subspaces.
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Khinchine type inequalities for lower dimensional subspaces

Let h: Ry — R4 be a decreasing function and let ® : R, — R
satisfy ®(0) = 0 and be such that ® and ®(r)/r are increasing.
Then for £ € Gp.m and L € KJ'(§), we have

(S Ao X1 dx whm
) '_< Jo AT ) x[Pax )

is a decreasing function of p on (—m, +00) (provided the integrals
in F(p) are well defined), that is,

F(q) < F(p), q=>p>-—m,

with equality if and only if ®(||x||.) = ||x||./F(p) for each x € &.
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Khinchine type inequalities for lower dimensional subspaces

@ The case m =1 of Theorem 1 is due to Marshall, Olkin, and
Proschan [1967], and a simpler proof was provided by Milman
and Pajor [GAFA 1989)].

Lemma. Let h : Ry — IR, be a decreasing function and let & : IRy — IR, satisfying
$(0) = 0 and such that & and ®(z)/z are increasing. Then

oo Pde 1/(p+1)
o) = (Epeleee)

80

is a decreasing function of p on | — 1, +o0o| (provided the integrals in G(p) are well defined).
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Khinchine type inequalities for lower dimensional subspaces

Let h(t) = e~ t. Then we have

Let f : Ry — Ry be a log-concave function (log f is concave) such
that f(0) = 0. Then for £ € G, m and L € K7'(€), the function

1

- Je FUIXI)IxII7dx | 75

F(p) = — 5 ,
Jee P[P

is a decreasing function of p on (—m, +00) (provided the integrals
are well defined). In particular, the function

70 = (o . f(\x|)|xwpdx)"*lr",

has the same monotonicity.
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Khinchine type inequalities for lower dimensional subspaces

@ By the identity
{Aﬂ%ﬂﬁw—1éw¢ﬂKﬂu+fﬂW&

we can get another form as follows.

Let K € K7, € € G and let L € K7(€). If
|K N &L = maxyee [K N (x + &1)|, then the function

1
J IP¢z||{dz >”“"

6 = (e = e T

is decreasing on (—m, +00).
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Khinchine type inequalities for lower dimensional subspaces

@ The following upper bound of gk m , established in
[L.-Xi-Huang, JLMS 2020] is a direct consequence of Corollary
3.

Theorem 4, L.-Xi-Huang, JLMS 2020

If K is an origin-symmetric convex body in R" and £ € G, m, then
forp>0

1

e (E) < \K|mB(p+m,n—m+1)»
,m,p - l l'
(Mwm|K N EL))mB(m,n—m+ 1)t

When m = 1, there is equality if and only if K a double cone in the
direction &.
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The lower bound of gk mp

@ The following lemma can be found in [Milman and Pajor,
GAFA 1989].

Let f : R” — (0, 400) be a measurable function such that
|Ifllco =1 and let K € K. Then the function

1
n—+p
H(p) = Pf(x
)= (Gt [ o)

is an increasing function of p on (—n, +00). The equality
H(p) = H(q) for p # q holds if and only if f is the characteristic

function of K. )
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The lower bound of gk mp

@ A direct consequence of Lemma 5 with n = m and

f = pe(x)/0e(0), pe(x) = KN (x+ §L)\, is the following
theorem.

Theorem 6

Let p>0and K € KJ. For £ € Gpm, let L € KJ'(§). If
|K N &L = maxyee [K N (x + &L)], then

m+p Z’ K|
P Pd S e

with equality if and only if

IKN&L|, ifxel;
\Kﬁ(x—i—f )= { 0, otherwise.
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The lower bound of gk mp

@ When m=1, L =[-1,1], and K is a symmetric convex body
in R”, inequality (1) reduces to

1+p ¢P |K]|
d Gna
(o e era)”> g €< 6o

with equality if and only if K is a cylinder with height of 2 in
the direction of £&. This has been established by Milman and
Pajor [GAFA 1989].
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The lower bound of gk mp

@ When m=1, L =[-1,1], and K is a symmetric convex body
in R”, inequality (1) reduces to

1+p ¢P |K]|
d Gna
(et /' ez ZaKne £ O

with equality if and only if K is a cylinder with height of 2 in
the direction of £&. This has been established by Milman and
Pajor [GAFA 1989].

@ Theorems 6 and 4 immediately give the following two-sided
inequality. The case m =1 is due to Milman and Pajor.
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The lower bound of gk mp

If K is an origin-symmetric convex body in R" and { € G, m, then

for p > 0,
K] / i |K]|
P d <
C( )|KQ£J‘| |K| | §Z| Z) C2(mp)|Km£J_|7
where " .
m N\,
c(m, p) = (m—{—p)
and

B(p—{—m,n—m—i—l)%

c2(m, p) = m
mwmB(m,n—m+1)»

When m = 1, equality in the left (right)-hand inequality holds if
and only if K is a cylinder (double cone).
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The lower bound of gk mp

@ In particular, by letting p — 0, we also have

Theorem 8
If K is an origin-symmetric convex body in R" and £ € G, m, then

el |K| m
- < — In|Psz|d.
om RO EL] —ex"{w/K n|Pez|dz

Kl epf{ia T - "
~ |KN&EH mwnB(m,n— m+1)n™m’

where 7y is the Euler constant.
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The lower bound of gk mp

@ As a consequence of Theorem 7 with p = 2, we have

Theorem 9

If K is an isotropic origin-symmetric convex body in R”, then for
any £1a£2 S Gn,mv

K&l _ (n) ((m+ 1)(m+2))%

IKNn&t| — \m)\ (n+1)(n+2)
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The lower bound of gk mp

@ As a consequence of Theorem 7 with p = 2, we have

Theorem 9

If K is an isotropic origin-symmetric convex body in R”, then for
any £1a£2 S Gn,mv

K& _ (1) (Gl 22y,

IKNn&t| — \m)\ (n+1)(n+2)

@ We say that a star body K in R" is isotropic with constant of
isotropy Ly if |[K| =1 and

/ |z - u?dz = L2,
K

for every u € S"1.
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The properties of (ATJK’m‘p and T'K,mﬁp

@ The following defintions are the radial function of the radial
pth mean body T,K [ Gardner and Zhang, Amer. J. Math.
1998] and the p-cross-section body C,K [ Gardner and
Giannopoulos, Indiana Univ. Math. J. 1999]. For u € S" 71,

1

1
= Kn(l, "d)"
Klal] KW\ N(l+y)|Pdy)?, 0<p<oo,

prc(u) = (

1 1
pCpK(u):<‘K|/K’KD(UL—|—Z)‘pdz)p, —-1<p<oo.
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The properties of (ATJK’m‘p and T'K,mﬁp

@ Define the function 'IN'K,,,W : Gp,m — (0,00) by, for K € K"

and £ € Gy m,
~ 1 ) .
_(_* b \2
1y T
= <]K\§] /E/EL Linek (%, )| K N (- + y)| dxdy)
- L 1 p—1 %
(e [ KnE e ) 1p e

_ L - |
Tkmoo(€) = Jim Timp(€) = max |KN(E +y)]

= max ’Kﬂ(£L+z)|, p = 0.
z€intK
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The properties of (ATJK’m‘p and T'K,mﬁp

e For K ¢ lg", denote by intK the interior of K. Define the
function Ck mp : Gpm — (0,00) by

1

1
W .tK‘Kﬂ(flﬁ‘Z)‘de)P, —l§p<oo7p7£0;

EK,m,p(g) = (

Ci,mo(€) = ;I)iLnO Ck,m,p(€) = exp <|I1(|/ log \Kﬂ(fL—i—z)‘dz), p

Ci.moo(€) = Jim Chmp(€) = max |[KN(EL+2)|, p=cc.

z€intK
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The properties of (ATJK’m‘p and T'K,mﬁp

Theorem 10

The functions Tk ,p and Ck m p are continuous on G, , with
respect to the spectral norm.

Let K € K" and £ € G . For ¢ € GL(n),

A

Cok,mp(€) = || -+~ leml|8] - Cocmp(°6),

where €1,...,&n, is a basis of £ such that ¢feq, ..., ¢te,, is an
orthonormal basis of ¢*¢. In particular, for O € O(n),

EOK,m,p(g) = é\T/K,m,p(otg)'




The properties of Ci 1, p and Tk m,p

0000080000000

The properties of (ATJK’m‘p and T'K,mﬁp

Let K € K" and € € G, . For ¢ € GL(n),

1—1
= (leal--lemll®) > =
Yot mpl &)l = o T Tk,mp(9"8),
(62t .., 6~Yun_m]?
where w1, ..., Up_pm is an orthonormal basis of £+ and €1,...,ep, is
a basis of £ such that ¢feq, ..., ¢tep, is an orthonormal basis of

¢t In particular, for O € O(n),

T-OK,m,p(g) = T-K,m,p(otg)‘
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The monotonicities of Cx mp and Tk mp

o Define the function Tk mp : Gom — (0,00) by

1 :
Tk,mp(§) = (W /KIE ‘K N (SL -H/)‘pd)/) , 1< p<oo,

. 1
TK,m,oo(g) = pl|—>n;o TK,m,p(g) = yrgf](TE ’K N (5 + Y)’

= rznea%(}Kﬂ (¢t +2)

, p=00.
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The monotonicities of Cx mp and Tk mp

o Define the function Ck mp : Gom — (0,00) by
1 1
Cmol®) = (1 [ IKN(E+2)Pdz)" 1< p <0 p 20,
K| Jk

Ciemol€) = lim Crmpl€) = ex0 (r [ log K€ +2)] k). p -

Citmoo(§) = lim_Cie m p(€) = max [K N (¢ +2)

, p=c0.
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The monotonicities of Cx mp and Tk mp

@ The functions Tk mp and Ck m p are both monotonically
increasing with respect to p. (The pth mean is increasing with
respect to p.)

Let K € K" and € Gy m. Then

K] |
e < Tkomp(§) < Thomg(§) < max|KN(E-+2)|, 1<p<gq.
kg < Teome(€) < Tiomg(€) < max|KN (€ +2)

(2)
and
K
\|Iél < Chomp(€) < Cma(€) < max|KN(EH+2)|, ~1<p<q,

(3)
Equality holds in each inequality in (2) and (3) if and only if K is
the Minkowski sum of an m-dimensional convex body contained in
¢ and an (n — m)-dimensional convex body contained in &+.
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The monotonicities of Cx mp and Tk mp

A well-known result by Berwald [Acta Math. 1947] (reverse
inequalities of the pth mean) implies the following inequalities.

Theorem 14
Let K € K" and € € Gp .

maxlK e+ + )] < (7T ) Tmal€

< ("t ”’") Tmp(€) < (m)|l<’<|£'|

Equality holds in each inequality if and only if |[K N (£+ —|—y)|ﬁ is
an affine function of y on KI|¢.

v
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The monotonicities of Cx mp and Tk mp

@ To establish the reverse inequalities of Ck m p, the following
lemma proved by Borell [Math. Ann. 1973] will be needed.

Let f be a positive and concave function on a convex body L in
R™. Then the function

m

vlp) =[G+ ) [ fPax

i=1 L

is log concave for p > 0. Moreover, log) is linear in an interval
[po, p1] if and only if f is a roof function over a point in L.
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The monotonicities of Cx mp and Tk mp

@ To establish the reverse inequalities of Ck m p, the following
lemma proved by Borell [Math. Ann. 1973] will be needed.

Let f be a positive and concave function on a convex body L in
R™. Then the function

m

vlp) =[G+ ) [ fPax

i=1 L

is log concave for p > 0. Moreover, log) is linear in an interval
[po, p1] if and only if f is a roof function over a point in L.

@ For 7 >0 and xg € K € K", the roof function on K with
height 7 over xg € K is a function r; ,,(-) : K — [0, +00) such
that the graph of r. ,, in R is a hyper cone with basis K
and height 7, such that the projection of the vertex is xp € K.
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The monotonicities of Cx mp and Tk mp

@ By Lemma 15, we have

Let n > m and let f be a positive and concave function on a
convex body L in R™. Then the function

[T7:G + (n— m)) i Pk

is decreasing for p > —1, with equality if and only if f is a roof
function over a point in L.

W(p) = (H,-"ll(f +(n=m)(p+1) J, f(x)<"m><P+1>dx> 5
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The monotonicities of Cx mp and Tk mp

e By Lemma 15, we have

Let n > m and let f be a positive and concave function on a
convex body L in R™. Then the function

(TIP3 + (n= m)(p + 1)) J, FO)mP+1) gx ;
W(p) - ( H?;l(i{-(n— m)) fL f(x)n—mdx

is decreasing for p > —1, with equality if and only if f is a roof
function over a point in L.

@ The case m =1 is due to Gardner and Giannopoulos [Indiana
Univ. Math. J. 1999].
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The monotonicities of Cx mp and Tk mp

Let K € K" and £ € G, ;. Then for —1 < p < q,
rznea}%( |K N (gL + Z)| < Oén,m,qCK,m,q(g) < Oln,m,pCK,m,p(g)
<n> K]
< —_,
m) |K|¢]

Equality holds in each inequality if and only if |K N (¢+ —|—y)|ﬁ is
an affine function of y on KI|¢.

v
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Zhang's inequality for lower dimensional subspaces

o Let Ke K" £ € Gom, and let L € KJ'(&). For x € &, define
the restricted plane projection function Ak (||x||.,§) of K as

Ax(Ix[1L, €) = [{€ N (E+y)  [KN(E+y)[m > |Ix]l¢ for all y € ¢1}|
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Zhang's inequality for lower dimensional subspaces

o Let Ke K" £ € Gom, and let L € KJ'(&). For x € &, define
the restricted plane projection function Ak (||x||.,§) of K as

Ax(Ix[1L, €) = [{€ N (E+y)  [KN(E+y)[m > |Ix]l¢ for all y € ¢1}|

o It is easy to see that Ax(||x||r,&) =0 if ||x]|L > o(&) and
LN (€ +y)is a convex body in &+ if ||x||. < (&), where

(€)= max {|K N (£ +y)|m :y € €1}

Lemma 18

The function AK(||x||L,£)ﬁ is concave with respect to the
variable ||x||p on Q := {||x||r : Ak(||x]|,§) # 0}, x €.
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Zhang's inequality for lower dimensional subspaces

@ The case m =1 is called the restricted chord projection
function introduced by Zhang [Geom. Dedicata 1991].

214 ZHANG GAOYONG

1. RESTRICTED CHORD PROJECTION OF CONVEX BODIES

In n-dimensional Euclidean space R", let K be a convex body and X a
hyperplane through the origin. Denote by G any straight line intersecting K.
For ¢ = 0, define

Kifo)={EnG:Z1G,|GnK|=a}

K5(o) is called the restricted chord projection over chord ¢ of the convex
body K on the hyperplane X. It can be shown that Kj(o) is convex.
Obviously, K3(0) is the common orthogonal projection.

The (n — 1)-dimensional volume of K5(g) in Z is denoted by Ag(c, u), here u
is the unit normal vector of Z, Ag (o, u) is called the restricted chord projection
function of K. It is easy to see that Ag(s,u) = 0 if o > o(u) and K(o) is a
convex body in X if ¢ < o{u), where ¢(u) is the maximal chord of K in
direction u, i.e.

a(u) =max {c:6 =GN K|, GLZ}.
G
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Zhang's inequality for lower dimensional subspaces

For K € K", let G be a random m-dimensional plane intersecting
K defined by, for £ € G, m,

Gz{ﬁ—i—y:Kﬂ(f—i—y)#@, yefj‘}.

Denote by dG the density of G under the group of translations.
The integral for the power A of the planes of K is defined as

hom(K) = / KN G*dG, X\ > 0.
KNG#D

See the books [Ren, Santald]. The well-known Crofton-Hadwiger

formula says
n(n+1
In+11(K) = (2)K\2~



Zhang's inequalit

[e]ele]e] lelelele]

Zhang's inequality for lower dimensional subspaces

Let K € K", £ € Gy, and let L € KJ'(§). Then
NG
I om(K) = ) mA ,€)dxdg,
A, ( ) m]L| K ||X||L )Xé-
where
o (;) o s
m Wl
In particular,
Il,m(K) = |K||Gn,m|-
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Zhang's inequality for lower dimensional subspaces

By Lemma 18, Lemma 19, and Theorem 1, we have

Theorem 20

Let K € K", £ € Gpm, and let L € KJ'(§). Then, for p > m,

2

_P m=p m
< Chmalll EGaml [ Ac(0.0% ([ Actilu e a
(4)
where c;, , , = pm_ﬁ B(p,n—m+1)B(m,n—m+ 1)_%. Equality

in (4) holds if and only if

/sAK(HXIIL,i)dX = m|L|o(§)"Ak(0,£)B(m,n—m+1). (5)




Zhang's inequalit

[e]ele]e]e]e] lele]

Zhang's inequality for lower dimensional subspaces

If p=n+ m, then we have

Let K € K", £ € Gpm, and let L € KJ'(§). Then

In-l—m,m(K)

n+m

n+m

< lll 7 Grl | Ak(0,6)° ( /§ AK(quL,odx) " de.
| (6)

where

+m n+m

hm=(n+mm " B(n+mn—m+1)B(mn—m+1)" .

Equality in (6) holds if and only if (5) holds.
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Zhang's inequality for lower dimensional subspaces

When m =1 and L = BJ, the above theorem immediately recovers
Zhang's inequality [Geom. Dedicata 1991].

Zhang's inequality

Let K € K". Then

|
K(In*K] = G0
n"(n!)2

with equality if and only if K is a simplex.




Thanks for your attention!
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