Some geometric and functional inequalities related to lower dimensional subspaces

Ai-Jun Li

Zhejiang University of Science and Technology

27 June 2023
INdAM Meeting
"CONVEX GEOMETRY - ANALYTIC ASPECTS"

Overview

(1) Overview
(2) The Khinchine type inequality
(3) The lower bound of $g_{K, m, p}$
(4) The properties of $C_{K, m, p}$ and $T_{K, m, p}$
(5) Zhang's inequality for lower dimensional subspaces

(2) The Khinchine type inequality

(3) The lower bound of $g_{K, m, p}$

44 The properties of $C_{K, m, p}$ and $T_{K, m, p}$
(5) Zhang's inequality for lower dimensional subspaces

Notations

- A convex body K is a compact convex subset in the n-dimensional Euclidean space \mathbb{R}^{n}.

Notations

- A convex body K is a compact convex subset in the n-dimensional Euclidean space \mathbb{R}^{n}.
- Support function: $h_{K}(x)=\max \{x \cdot y: y \in K\}$, where $x \cdot y$ is the inner product of $x, y \in \mathbb{R}^{n}$.

Notations

- A convex body K is a compact convex subset in the n-dimensional Euclidean space \mathbb{R}^{n}.
- Support function: $h_{K}(x)=\max \{x \cdot y: y \in K\}$, where $x \cdot y$ is the inner product of $x, y \in \mathbb{R}^{n}$.
- Denote by \mathcal{K}^{n} the set of convex bodies in \mathbb{R}^{n} and \mathcal{K}_{o}^{n} the subset of \mathcal{K}^{n} that convex bodies contain the origin in their interiors.

Notations

- A convex body K is a compact convex subset in the n-dimensional Euclidean space \mathbb{R}^{n}.
- Support function: $h_{K}(x)=\max \{x \cdot y: y \in K\}$, where $x \cdot y$ is the inner product of $x, y \in \mathbb{R}^{n}$.
- Denote by \mathcal{K}^{n} the set of convex bodies in \mathbb{R}^{n} and \mathcal{K}_{o}^{n} the subset of \mathcal{K}^{n} that convex bodies contain the origin in their interiors.
- If $K \in \mathcal{K}_{o}^{n}$, then the polar body K^{*} of K is defined by

$$
K^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leq 1 \quad \text { for all } y \in K\right\} .
$$

Notations

- A star body L in \mathbb{R}^{n} is a compact star-shaped set about the origin (the intersection of every straight line through the origin with L is a line segment) whose radial function $\rho_{L}(x)=\max \{\lambda \geq 0: \lambda x \in L\}$ for $x \in \mathbb{R}^{n} \backslash\{o\}$ is positive and continuous.

Notations

- A star body L in \mathbb{R}^{n} is a compact star-shaped set about the origin (the intersection of every straight line through the origin with L is a line segment) whose radial function $\rho_{L}(x)=\max \{\lambda \geq 0: \lambda x \in L\}$ for $x \in \mathbb{R}^{n} \backslash\{o\}$ is positive and continuous.
- The Minkowski functional of L is defined by $\|x\|_{L}=\inf \{\lambda: x \in \lambda L\}$ for $x \in \mathbb{R}^{n} \backslash\{o\}$.

Notations

- A star body L in \mathbb{R}^{n} is a compact star-shaped set about the origin (the intersection of every straight line through the origin with L is a line segment) whose radial function $\rho_{L}(x)=\max \{\lambda \geq 0: \lambda x \in L\}$ for $x \in \mathbb{R}^{n} \backslash\{o\}$ is positive and continuous.
- The Minkowski functional of L is defined by $\|x\|_{L}=\inf \{\lambda: x \in \lambda L\}$ for $x \in \mathbb{R}^{n} \backslash\{o\}$.
- It is easy to see that for $K \in \mathcal{K}_{o}^{n}$,

$$
\rho_{K}^{-1}(\cdot)=\|\cdot\|_{K}=h_{K^{*}}(\cdot) .
$$

Notations

- A star body L in \mathbb{R}^{n} is a compact star-shaped set about the origin (the intersection of every straight line through the origin with L is a line segment) whose radial function $\rho_{L}(x)=\max \{\lambda \geq 0: \lambda x \in L\}$ for $x \in \mathbb{R}^{n} \backslash\{o\}$ is positive and continuous.
- The Minkowski functional of L is defined by $\|x\|_{L}=\inf \{\lambda: x \in \lambda L\}$ for $x \in \mathbb{R}^{n} \backslash\{o\}$.
- It is easy to see that for $K \in \mathcal{K}_{o}^{n}$,

$$
\rho_{K}^{-1}(\cdot)=\|\cdot\|_{K}=h_{K^{*}}(\cdot) .
$$

- Denote the set of star bodies in \mathbb{R}^{n} by \mathcal{S}_{o}^{n}.

Notations

- The Grassmann manifold $G_{n, m}$ of m-dimensional linear subspaces of \mathbb{R}^{n} is a compact homogeneous space with respect to the rotation group $S O_{n}$. It carries a unique rotation invariant probability measure, which we denote by $d \xi$.

Notations

- The Grassmann manifold $G_{n, m}$ of m-dimensional linear subspaces of \mathbb{R}^{n} is a compact homogeneous space with respect to the rotation group $S O_{n}$. It carries a unique rotation invariant probability measure, which we denote by $d \xi$.
- When $m=1$ and $m=n-1, G_{n, 1}$ and $G_{n, n-1}$ can be identified as the hemisphere of the unit sphere S^{n-1}.

Notations

- The Grassmann manifold $G_{n, m}$ of m-dimensional linear subspaces of \mathbb{R}^{n} is a compact homogeneous space with respect to the rotation group $S O_{n}$. It carries a unique rotation invariant probability measure, which we denote by $d \xi$.
- When $m=1$ and $m=n-1, G_{n, 1}$ and $G_{n, n-1}$ can be identified as the hemisphere of the unit sphere S^{n-1}.
- Let $\mathrm{P}_{\xi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the orthogonal projection map with range space ξ for $\xi \in G_{n, m}$, and $|\cdot|$ denote Lebesgue measure on the corresponding subspace. When not causing confusion, we also write $|x|$ for the Euclidean norm of x in $\xi \in G_{n, m}$.

Notations

- Establishing geometric and functional inequalities related to lower dimensional subspaces is in general not easy.

Notations

- Establishing geometric and functional inequalities related to lower dimensional subspaces is in general not easy.
- The challenge is that the unit sphere S^{n-1} as a hypersurface of \mathbb{R}^{n} has a globally defined continuous normal vector field, while the Grassmann manifold $G_{n, m}, 1<m<n-1$, does not have a similar property.

Notations

- Establishing geometric and functional inequalities related to lower dimensional subspaces is in general not easy.
- The challenge is that the unit sphere S^{n-1} as a hypersurface of \mathbb{R}^{n} has a globally defined continuous normal vector field, while the Grassmann manifold $G_{n, m}, 1<m<n-1$, does not have a similar property.
- "It is not at all clear what is the right body to associate with the function $G_{n, m} \ni \xi \rightarrow\left|\mathrm{P}_{\xi} K\right|, K \in \mathcal{K}^{n}$, and in which space it should reside." - E. Milman [JAMS 2023]

The Blaschke-Santaló inequality

- However, the compactness of Grassmann manifolds ensures us to define the related functions on $G_{n, m}$, which inherit some good properties like the cases $m=1$ and $m=n-1$.

The Blaschke-Santaló inequality

- However, the compactness of Grassmann manifolds ensures us to define the related functions on $G_{n, m}$, which inherit some good properties like the cases $m=1$ and $m=n-1$.
- For example, in order to establish the dual Grassmannian Loomis-Whitney inequality, the authors [L.-Xi-Huang, JLMS 2020] introduced a new functions $g_{K, m, p}$ on Grassmann manifolds, which is a generalization of the Minkowski functional of L_{p} centroid bodies.

The Blaschke-Santaló inequality

- However, the compactness of Grassmann manifolds ensures us to define the related functions on $G_{n, m}$, which inherit some good properties like the cases $m=1$ and $m=n-1$.
- For example, in order to establish the dual Grassmannian Loomis-Whitney inequality, the authors [L.-Xi-Huang, JLMS 2020] introduced a new functions $g_{K, m, p}$ on Grassmann manifolds, which is a generalization of the Minkowski functional of L_{p} centroid bodies.
- The function $g_{K, m, p}: G_{n, m} \rightarrow(0, \infty)$ is defined by (up to a factor), for $K \in \mathcal{S}_{o}^{n}$ and $\xi \in G_{n, m}$,

$$
g_{K, m, p}(\xi)=\left(\frac{1}{|K|} \int_{K}\left|\mathrm{P}_{\xi} z\right|^{p} d z\right)^{\frac{1}{p}}, \quad 0<p<\infty
$$

The L_{p}-cosine transform

- When $m=1$, the function $g_{K, m, p}$ reduces to the Minkowski functional of the polar L_{p} centroid body $\Gamma_{p}^{*} K$; i.e., for $u \in S^{n-1}$,

$$
\|u\|_{\Gamma_{p}^{*} K}=\left(\frac{1}{|K|} \int_{K}|u \cdot z|^{p} d z\right)^{\frac{1}{p}} .
$$

The L_{p}-cosine transform

- When $m=1$, the function $g_{K, m, p}$ reduces to the Minkowski functional of the polar L_{p} centroid body $\Gamma_{p}^{*} K$; i.e., for $u \in S^{n-1}$,

$$
\|u\|_{\Gamma_{p}^{*} K}=\left(\frac{1}{|K|} \int_{K}|u \cdot z|^{p} d z\right)^{\frac{1}{p}} .
$$

- A normalized definition of $\Gamma_{p} K$ was introduced by Lutwak and Zhang [J. Differential Geom. 1997]. When $p=1, \Gamma_{1} K$ is usually written as 「K, which is the classical centroid body firstly defined and investigated by Blaschke.

The L_{p}-sine transform

- When $m=n-1$, the function $g_{K, m, p}$ reduces to the Minkowski functional of the polar L_{p} sine centroid body $\wedge_{p}^{*} K$ [Huang-L.-Xi-Ye, JFA 2022]; i.e., for $u \in S^{n-1}$,

$$
\|u\|_{\wedge_{p}^{*} K}=\left(\frac{1}{|K|} \int_{K}\left|\mathrm{P}_{u^{\perp}} z\right|^{p} d z\right)^{\frac{1}{p}} .
$$

The L_{p}-sine transform

- The authors [L.-Xi-Huang, JLMS 2020] showed that the function $g_{K, m, p}$ is continuous on $G_{n, m}$ with respect to the spectral norm. Moreover, an upper bound of $g_{K, m, p}$ for origin-symmetric convex body K in terms of $\left|K \cap \xi^{\perp}\right|$ was also obtained, where $K \cap \xi^{\perp}$ is the intersection of K with the orthogonal complement of ξ.

The L_{p}-sine transform

- The authors [L.-Xi-Huang, JLMS 2020] showed that the function $g_{K, m, p}$ is continuous on $G_{n, m}$ with respect to the spectral norm. Moreover, an upper bound of $g_{K, m, p}$ for origin-symmetric convex body K in terms of $\left|K \cap \xi^{\perp}\right|$ was also obtained, where $K \cap \xi^{\perp}$ is the intersection of K with the orthogonal complement of ξ.
- One aim of this talk is to continue the study of the properties of $g_{K, m, p}$. Firstly, we shall establish the following Khinchine type inequality (or the inverse Hölder inequality) for m-dimensional subspaces.
(2) The Khinchine type inequality
(3) The lower bound of $g_{K, m, p}$
(4) The properties of $C_{K, m, p}$ and $T_{K, m, p}$
(5) Zhang's inequality for lower dimensional subspaces

Khinchine type inequalities for lower dimensional subspaces

Theorem 1

Let $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a decreasing function and let $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ satisfy $\Phi(0)=0$ and be such that Φ and $\Phi(r) / r$ are increasing. Then for $\xi \in G_{n, m}$ and $L \in \mathcal{K}_{o}^{m}(\xi)$, we have

$$
F(p):=\left(\frac{\int_{\xi} h\left(\Phi\left(\|x\|_{L}\right)\right)\left\|_{x}\right\|_{L}^{p} d x}{\int_{\xi} h\left(\|x\|_{L}\right)\|x\|_{L}^{p} d x}\right)^{\frac{1}{p+m}}
$$

is a decreasing function of p on $(-m,+\infty)$ (provided the integrals in $F(p)$ are well defined), that is,

$$
F(q) \leq F(p), \quad q \geq p>-m,
$$

with equality if and only if $\Phi\left(\|x\|_{L}\right)=\|x\|_{L} / F(p)$ for each $x \in \xi$.

Khinchine type inequalities for lower dimensional subspaces

- The case $m=1$ of Theorem 1 is due to Marshall, Olkin, and Proschan [1967], and a simpler proof was provided by Milman and Pajor [GAFA 1989].

Lemma. Let $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a decreasing function and let $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R _ { + }}$ satisfying $\Phi(0)=0$ and such that Φ and $\Phi(x) / x$ are increasing. Then

$$
G(p)=\left(\frac{\int_{0}^{\infty} h(\Phi(x)) x^{p} d x}{\int_{0}^{\infty} h(x) x^{p} d x}\right)^{1 /(p+1)}
$$

is a decreasing function of p on $]-1,+\infty[$ (provided the integrals in $G(p)$ are well defined).

Khinchine type inequalities for lower dimensional subspaces

Let $h(t)=e^{-t}$. Then we have

Corollary 2

Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a log-concave function (log f is concave) such that $f(0)=0$. Then for $\xi \in G_{n, m}$ and $L \in \mathcal{K}_{o}^{m}(\xi)$, the function

$$
\tilde{F}(p):=\left(\frac{\int_{\xi} f\left(\|x\|_{L}\right)\|x\|_{L}^{p} d x}{\int_{\xi} e^{-\|x\|_{L}}\|x\|_{L}^{p} d x}\right)^{\frac{1}{p+m}},
$$

is a decreasing function of p on $(-m,+\infty)$ (provided the integrals are well defined). In particular, the function

$$
\bar{F}(p):=\left(\frac{1}{m \omega_{m} \Gamma(p+m)} \int_{\xi} f(|x|)|x|^{p} d x\right)^{\frac{1}{p+m}},
$$

has the same monotonicity.

Khinchine type inequalities for lower dimensional subspaces

- By the identity

$$
\int_{K}\left\|\mathrm{P}_{\xi} z\right\|_{L}^{p} d z=\int_{\xi}\|x\|_{L}^{p}\left|K \cap\left(x+\xi^{\perp}\right)\right| d x,
$$

we can get another form as follows.

Corollary 3

Let $K \in \mathcal{K}_{o}^{n}, \xi \in G_{n, m}$ and let $L \in \mathcal{K}_{o}^{m}(\xi)$. If
$\left|K \cap \xi^{\perp}\right|=\max _{x \in \xi}\left|K \cap\left(x+\xi^{\perp}\right)\right|$, then the function

$$
\widehat{F}(p):=\left(\frac{\int_{K}\left\|\mathrm{P}_{\xi} z\right\|_{L}^{p} d z}{m\left|K \cap \xi^{\perp} \| L\right| B(p+m, n-m+1)}\right)^{\frac{1}{p+m}}
$$

is decreasing on $(-m,+\infty)$.

Khinchine type inequalities for lower dimensional subspaces

- The following upper bound of $g_{K, m, p}$ established in [L.-Xi-Huang, JLMS 2020] is a direct consequence of Corollary 3.

Theorem 4, L.-Xi-Huang, JLMS 2020

If K is an origin-symmetric convex body in \mathbb{R}^{n} and $\xi \in G_{n, m}$, then for $p>0$

$$
g_{K, m, p}(\xi) \leq \frac{|K|^{\frac{1}{m}} B(p+m, n-m+1)^{\frac{1}{p}}}{\left(m \omega_{m}\left|K \cap \xi^{\perp}\right|\right)^{\frac{1}{m}} B(m, n-m+1)^{\frac{1}{p}+\frac{1}{m}}} .
$$

When $m=1$, there is equality if and only if K a double cone in the direction ξ.
(2) The Khinchine type inequality
(3) The lower bound of $g_{K, m, p}$
(4) The properties of $C_{K, m, p}$ and $T_{K, m, p}$
(5) Zhang's inequality for lower dimensional subspaces

The lower bound of $g_{K, m, p}$

- The following lemma can be found in [Milman and Pajor, GAFA 1989].

Lemma 5

Let $f: \mathbb{R}^{n} \rightarrow(0,+\infty)$ be a measurable function such that $\|f\|_{\infty}=1$ and let $K \in \mathcal{K}_{o}^{n}$. Then the function

$$
H(p)=\left(\frac{n+p}{n|K|} \int_{\mathbb{R}^{n}}\|x\|_{K}^{p} f(x) d x\right)^{\frac{1}{n+p}}
$$

is an increasing function of p on $(-n,+\infty)$. The equality $H(p)=H(q)$ for $p \neq q$ holds if and only if f is the characteristic function of K.

The lower bound of $g_{K, m, p}$

- A direct consequence of Lemma 5 with $n=m$ and $f=\varphi_{\xi}(x) / \varphi_{\xi}(0), \varphi_{\xi}(x)=\left|K \cap\left(x+\xi^{\perp}\right)\right|$, is the following theorem.

Theorem 6

Let $p>0$ and $K \in \mathcal{K}_{o}^{n}$. For $\xi \in G_{n, m}$, let $L \in \mathcal{K}_{o}^{m}(\xi)$. If $\left|K \cap \xi^{\perp}\right|=\max _{x \in \xi}\left|K \cap\left(x+\xi^{\perp}\right)\right|$, then

$$
\begin{equation*}
\left(\frac{m+p}{m|K|} \int_{K}\left\|\mathrm{P}_{\xi} z\right\|_{L}^{p} d z\right)^{\frac{m}{p}} \geq \frac{|K|}{|L|\left|K \cap \xi^{\perp}\right|}, \tag{1}
\end{equation*}
$$

with equality if and only if

$$
\left|K \cap\left(x+\xi^{\perp}\right)\right|= \begin{cases}\left|K \cap \xi^{\perp}\right|, & \text { if } x \in L \\ 0, & \text { otherwise } .\end{cases}
$$

The lower bound of $g_{K, m, p}$

- When $m=1, L=[-1,1]$, and K is a symmetric convex body in \mathbb{R}^{n}, inequality (1) reduces to

$$
\left(\frac{1+p}{|K|} \int_{K}|z \cdot \xi|^{p} d z\right)^{\frac{1}{p}} \geq \frac{|K|}{2\left|K \cap \xi^{\perp}\right|}, \quad \xi \in G_{n, 1},
$$

with equality if and only if K is a cylinder with height of 2 in the direction of ξ. This has been established by Milman and Pajor [GAFA 1989].

The lower bound of $g_{K, m, p}$

- When $m=1, L=[-1,1]$, and K is a symmetric convex body in \mathbb{R}^{n}, inequality (1) reduces to

$$
\left(\frac{1+p}{|K|} \int_{K}|z \cdot \xi|^{p} d z\right)^{\frac{1}{p}} \geq \frac{|K|}{2\left|K \cap \xi^{\perp}\right|}, \quad \xi \in G_{n, 1},
$$

with equality if and only if K is a cylinder with height of 2 in the direction of ξ. This has been established by Milman and Pajor [GAFA 1989].

- Theorems 6 and 4 immediately give the following two-sided inequality. The case $m=1$ is due to Milman and Pajor.

The lower bound of $g_{K, m, p}$

Theorem 7

If K is an origin-symmetric convex body in \mathbb{R}^{n} and $\xi \in G_{n, m}$, then for $p>0$,

$$
c_{1}(m, p) \frac{|K|}{\left|K \cap \xi^{\perp}\right|} \leq\left(\frac{1}{|K|} \int_{K}\left|\mathrm{P}_{\xi} z\right|^{p} d z\right)^{\frac{m}{p}} \leq c_{2}(m, p) \frac{|K|}{\left|K \cap \xi^{\perp}\right|},
$$

where

$$
c_{1}(m, p)=\frac{1}{\omega_{m}}\left(\frac{m}{m+p}\right)^{\frac{m}{p}}
$$

and

$$
c_{2}(m, p)=\frac{B(p+m, n-m+1)^{\frac{m}{p}}}{m \omega_{m} B(m, n-m+1)^{\frac{m}{p}+1}} .
$$

When $m=1$, equality in the left (right)-hand inequality holds if and only if K is a cylinder (double cone).

The lower bound of $g_{K, m, p}$

- In particular, by letting $p \rightarrow 0$, we also have

Theorem 8

If K is an origin-symmetric convex body in \mathbb{R}^{n} and $\xi \in G_{n, m}$, then

$$
\begin{aligned}
\frac{e^{-1}}{\omega_{m}} \frac{|K|}{\left|K \cap \xi^{\perp}\right|} & \leq \exp \left\{\frac{m}{|K|} \int_{K} \ln \left|\mathrm{P}_{\xi} z\right| d z\right\} \\
& \leq \frac{|K|}{\left|K \cap \xi^{\perp}\right|} \frac{\exp \left\{\left(\sum_{k=1}^{m} \frac{m}{k}-1\right)\right\} \gamma^{-m}}{m \omega_{m} B(m, n-m+1) n^{m}},
\end{aligned}
$$

where γ is the Euler constant.

The lower bound of $g_{K, m, p}$

- As a consequence of Theorem 7 with $p=2$, we have

Theorem 9

If K is an isotropic origin-symmetric convex body in \mathbb{R}^{n}, then for any $\xi_{1}, \xi_{2} \in G_{n, m}$,

$$
\frac{\left|K \cap \xi_{1}^{\perp}\right|}{\left|K \cap \xi_{2}^{\perp}\right|} \leq\binom{ n}{m}\left(\frac{(m+1)(m+2)}{(n+1)(n+2)}\right)^{\frac{m}{2}} .
$$

The lower bound of $g_{K, m, p}$

- As a consequence of Theorem 7 with $p=2$, we have

Theorem 9

If K is an isotropic origin-symmetric convex body in \mathbb{R}^{n}, then for any $\xi_{1}, \xi_{2} \in G_{n, m}$,

$$
\frac{\left|K \cap \xi_{1}^{\perp}\right|}{\left|K \cap \xi_{2}^{\perp}\right|} \leq\binom{ n}{m}\left(\frac{(m+1)(m+2)}{(n+1)(n+2)}\right)^{\frac{m}{2}} .
$$

- We say that a star body K in \mathbb{R}^{n} is isotropic with constant of isotropy L_{K} if $|K|=1$ and

$$
\int_{K}|z \cdot u|^{2} d z=L_{K}^{2},
$$

for every $u \in S^{n-1}$.
(2) The Khinchine type inequality
(3) The lower bound of $g_{K, m, p}$
(4) The properties of $C_{K, m, p}$ and $T_{K, m, p}$
(5) Zhang's inequality for lower dimensional subspaces

The properties of $\widetilde{C}_{K, m, p}$ and $\widetilde{T}_{K, m, p}$

- The following defintions are the radial function of the radial p th mean body $T_{p} K$ [Gardner and Zhang, Amer. J. Math. 1998] and the p-cross-section body $C_{p} K$ [Gardner and Giannopoulos, Indiana Univ. Math. J. 1999]. For $u \in S^{n-1}$,

$$
\begin{aligned}
\rho_{T_{p} K}(u) & =\left(\frac{1}{|K| u^{\perp} \mid} \int_{K \mid u^{\perp}}\left|K \cap\left(I_{u}+y\right)\right|^{p} d y\right)^{\frac{1}{p}}, \quad 0<p<\infty, \\
\rho_{C_{p} K}(u) & =\left(\frac{1}{|K|} \int_{K}\left|K \cap\left(u^{\perp}+z\right)\right|^{p} d z\right)^{\frac{1}{p}}, \quad-1<p<\infty .
\end{aligned}
$$

The properties of $\widetilde{C}_{K, m, p}$ and $\widetilde{T}_{K, m, p}$

- Define the function $\widetilde{T}_{K, m, p}: G_{n, m} \rightarrow(0, \infty)$ by, for $K \in \mathcal{K}^{n}$ and $\xi \in G_{n, m}$,

$$
\begin{aligned}
\widetilde{T}_{K, m, p}(\xi) & =\left(\frac{1}{|K| \xi \mid} \int_{\operatorname{int} K \mid \xi}\left|K \cap\left(\xi^{\perp}+y\right)\right|^{p} d y\right)^{\frac{1}{p}} \\
& =\left(\frac{1}{|K| \xi \mid} \int_{\xi} \int_{\xi^{\perp}} \mathbf{1}_{\operatorname{int} K}(x, y)\left|K \cap\left(\xi^{\perp}+y\right)\right|^{p-1} d x d y\right)^{\frac{1}{p}} \\
& =\left(\frac{1}{|K| \xi \mid} \int_{\operatorname{int} K}\left|K \cap\left(\xi^{\perp}+z\right)\right|^{p-1} d z\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{T}_{K, m, \infty}(\xi) & =\lim _{p \rightarrow \infty} \widetilde{T}_{K, m, p}(\xi)=\max _{y \in \operatorname{int} K \mid \xi}\left|K \cap\left(\xi^{\perp}+y\right)\right| \\
& =\max _{z \in \operatorname{int} K}\left|K \cap\left(\xi^{\perp}+z\right)\right|, \quad p=\infty .
\end{aligned}
$$

The properties of $\widetilde{C}_{K, m, p}$ and $\widetilde{T}_{K, m, p}$

- For $K \in \mathcal{K}^{n}$, denote by int K the interior of K. Define the function $\widetilde{C}_{K, m, p}: G_{n, m} \rightarrow(0, \infty)$ by

$$
\begin{aligned}
& \widetilde{C}_{K, m, p}(\xi)=\left(\frac{1}{|K|} \int_{\mathrm{int} K}\left|K \cap\left(\xi^{\perp}+z\right)\right|^{p} d z\right)^{\frac{1}{p}}, \quad-1 \leq p<\infty, p \neq 0, \\
& \widetilde{C}_{K, m, 0}(\xi)=\lim _{p \rightarrow 0} \widetilde{C}_{K, m, p}(\xi)=\exp \left(\frac{1}{|K|} \int_{\mathrm{int} K} \log \left|K \cap\left(\xi^{\perp}+z\right)\right| d z\right), p \\
& \widetilde{C}_{K, m, \infty}(\xi)=\lim _{p \rightarrow \infty} \widetilde{C}_{K, m, p}(\xi)=\max _{z \in \operatorname{int} K}\left|K \cap\left(\xi^{\perp}+z\right)\right|, \quad p=\infty .
\end{aligned}
$$

The properties of $\widetilde{C}_{K, m, p}$ and $\widetilde{T}_{K, m, p}$

Theorem 10

The functions $\widetilde{T}_{K, m, p}$ and $\widetilde{C}_{K, m, p}$ are continuous on $G_{n, m}$ with respect to the spectral norm.

Theorem 11

Let $K \in \mathcal{K}^{n}$ and $\xi \in G_{n, m}$. For $\phi \in \operatorname{GL}(n)$,

$$
\widetilde{C}_{\phi K, m, p}(\xi)=\left|\varepsilon_{1}\right| \cdots\left|\varepsilon_{m}\right||\phi| \cdot \widetilde{C}_{K, m, p}\left(\phi^{t} \xi\right),
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{m}$ is a basis of ξ such that $\phi^{t} \varepsilon_{1}, \ldots, \phi^{t} \varepsilon_{m}$ is an orthonormal basis of $\phi^{t} \xi$. In particular, for $O \in \mathrm{O}(n)$,

$$
\widetilde{C}_{O K, m, p}(\xi)=\widetilde{C}_{K, m, p}\left(O^{t} \xi\right) .
$$

The properties of $\widetilde{C}_{K, m, p}$ and $\widetilde{T}_{K, m, p}$

Theorem 12

Let $K \in \mathcal{K}^{n}$ and $\xi \in G_{n, m}$. For $\phi \in \operatorname{GL}(n)$,

$$
\widetilde{T}_{\phi K, m, p}(\xi)=\frac{\left(\left|\varepsilon_{1}\right| \cdots\left|\varepsilon_{m} \| \phi\right|\right)^{1-\frac{1}{p}}}{\left[\phi^{-1} u_{1}, \ldots, \phi^{-1} u_{n-m}\right]^{\frac{1}{p}}} \widetilde{T}_{K, m, p}\left(\phi^{t} \xi\right),
$$

where u_{1}, \ldots, u_{n-m} is an orthonormal basis of ξ^{\perp} and $\varepsilon_{1}, \ldots, \varepsilon_{m}$ is a basis of ξ such that $\phi^{t} \varepsilon_{1}, \ldots, \phi^{t} \varepsilon_{m}$ is an orthonormal basis of $\phi^{t} \xi$. In particular, for $O \in O(n)$,

$$
\widetilde{T}_{O K, m, p}(\xi)=\tilde{T}_{K, m, p}\left(O^{t} \xi\right)
$$

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

- Define the function $T_{K, m, p}: G_{n, m} \rightarrow(0, \infty)$ by

$$
T_{K, m, p}(\xi)=\left(\frac{1}{|K| \xi \mid} \int_{K \mid \xi}\left|K \cap\left(\xi^{\perp}+y\right)\right|^{p} d y\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty
$$

$$
\begin{aligned}
T_{K, m, \infty}(\xi) & =\lim _{p \rightarrow \infty} T_{K, m, p}(\xi)=\max _{y \in K \mid \xi}\left|K \cap\left(\xi^{\perp}+y\right)\right| \\
& =\max _{z \in K}\left|K \cap\left(\xi^{\perp}+z\right)\right|, \quad p=\infty .
\end{aligned}
$$

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

- Define the function $C_{K, m, p}: G_{n, m} \rightarrow(0, \infty)$ by

$$
\begin{aligned}
& C_{K, m, p}(\xi)=\left(\frac{1}{|K|} \int_{K}\left|K \cap\left(\xi^{\perp}+z\right)\right|^{p} d z\right)^{\frac{1}{p}},-1 \leq p<\infty, p \neq 0, \\
& C_{K, m, 0}(\xi)=\lim _{p \rightarrow 0} C_{K, m, p}(\xi)=\exp \left(\frac{1}{|K|} \int_{K} \log \left|K \cap\left(\xi^{\perp}+z\right)\right| d z\right), p= \\
& C_{K, m, \infty}(\xi)=\lim _{p \rightarrow \infty} C_{K, m, p}(\xi)=\max _{z \in K}\left|K \cap\left(\xi^{\perp}+z\right)\right|, \quad p=\infty .
\end{aligned}
$$

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

- The functions $T_{K, m, p}$ and $C_{K, m, p}$ are both monotonically increasing with respect to p. (The p th mean is increasing with respect to p.)

Theorem 13

Let $K \in \mathcal{K}^{n}$ and $\xi \in G_{n, m}$. Then

$$
\begin{equation*}
\frac{|K|}{|K| \xi \mid} \leq T_{K, m, p}(\xi) \leq T_{K, m, q}(\xi) \leq \max _{z \in K}\left|K \cap\left(\xi^{\perp}+z\right)\right|, \quad 1 \leq p \leq q . \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{|K|}{|K| \xi \mid} \leq C_{K, m, p}(\xi) \leq C_{K, m, q}(\xi) \leq \max _{z \in K}\left|K \cap\left(\xi^{\perp}+z\right)\right|, \quad-1 \leq p \leq q, \tag{3}
\end{equation*}
$$

Equality holds in each inequality in (2) and (3) if and only if K is the Minkowski sum of an m-dimensional convex body contained in ξ and an $(n-m)$-dimensional convex body contained in ξ^{\perp}.

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

A well-known result by Berwald [Acta Math. 1947] (reverse inequalities of the p th mean) implies the following inequalities.

Theorem 14

Let $K \in \mathcal{K}^{n}$ and $\xi \in G_{n, m}$. Then for $\frac{1}{n-m} \leq p \leq q$,

$$
\begin{aligned}
\max _{z \in K}\left|K \cap\left(\xi^{\perp}+z\right)\right| & \leq\binom{ m+q n-q m}{m}^{\frac{1}{q}} T_{K, m, q}(\xi) \\
& \leq\binom{ m+p n-p m}{m}^{\frac{1}{p}} T_{K, m, p}(\xi) \leq\binom{ n}{m} \frac{|K|}{|K| \xi \mid} .
\end{aligned}
$$

Equality holds in each inequality if and only if $\left\lvert\, K \cap\left(\xi^{\perp}+y\right)^{\frac{1}{n-m}}\right.$ is an affine function of y on $K \mid \xi$.

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

- To establish the reverse inequalities of $C_{K, m, p}$, the following lemma proved by Borell [Math. Ann. 1973] will be needed.

Lemma 15

Let f be a positive and concave function on a convex body L in \mathbb{R}^{m}. Then the function

$$
\psi(p)=\prod_{i=1}^{m}(i+p) \int_{L} f(x)^{p} d x
$$

is \log concave for $p>0$. Moreover, $\log \psi$ is linear in an interval [p_{0}, p_{1}] if and only if f is a roof function over a point in L.

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

- To establish the reverse inequalities of $C_{K, m, p}$, the following lemma proved by Borell [Math. Ann. 1973] will be needed.

Lemma 15

Let f be a positive and concave function on a convex body L in \mathbb{R}^{m}. Then the function

$$
\psi(p)=\prod_{i=1}^{m}(i+p) \int_{L} f(x)^{p} d x
$$

is \log concave for $p>0$. Moreover, $\log \psi$ is linear in an interval [p_{0}, p_{1}] if and only if f is a roof function over a point in L.

- For $\tau>0$ and $x_{0} \in K \in \mathcal{K}^{n}$, the roof function on K with height τ over $x_{0} \in K$ is a function $r_{\tau, x_{0}}(\cdot): K \rightarrow[0,+\infty)$ such that the graph of $r_{\tau, x_{0}}$ in \mathbb{R}^{n+1} is a hyper cone with basis K and height τ, such that the projection of the vertex is $x_{0} \in K$.

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

- By Lemma 15, we have

Lemma 16

Let $n>m$ and let f be a positive and concave function on a convex body L in \mathbb{R}^{m}. Then the function

$$
\Psi(p)=\left(\frac{\prod_{i=1}^{m}(i+(n-m)(p+1))}{\prod_{i=1}^{m}(i+(n-m))} \frac{\int_{L} f(x)^{(n-m)(p+1)} d x}{\int_{L} f(x)^{n-m} d x}\right)^{\frac{1}{p}}
$$

is decreasing for $p>-1$, with equality if and only if f is a roof function over a point in L.

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

- By Lemma 15, we have

Lemma 16

Let $n>m$ and let f be a positive and concave function on a convex body L in \mathbb{R}^{m}. Then the function

$$
\Psi(p)=\left(\frac{\prod_{i=1}^{m}(i+(n-m)(p+1))}{\prod_{i=1}^{m}(i+(n-m))} \frac{\int_{L} f(x)^{(n-m)(p+1)} d x}{\int_{L} f(x)^{n-m} d x}\right)^{\frac{1}{p}}
$$

is decreasing for $p>-1$, with equality if and only if f is a roof function over a point in L.

- The case $m=1$ is due to Gardner and Giannopoulos [Indiana Univ. Math. J. 1999].

The monotonicities of $C_{K, m, p}$ and $T_{K, m, p}$

Theorem 17

Let $K \in \mathcal{K}^{n}$ and $\xi \in G_{n, m}$. Then for $-1 \leq p \leq q$,

$$
\begin{aligned}
\max _{z \in K}\left|K \cap\left(\xi^{\perp}+z\right)\right| & \leq \alpha_{n, m, q} C_{K, m, q}(\xi) \leq \alpha_{n, m, p} C_{K, m, p}(\xi) \\
& \leq\binom{ n}{m} \frac{|K|}{|K| \xi \mid} .
\end{aligned}
$$

Equality holds in each inequality if and only if $\left|K \cap\left(\xi^{\perp}+y\right)\right|^{\frac{1}{n-m}}$ is an affine function of y on $K \mid \xi$.
(2) The Khinchine type inequality
(3) The lower bound of $g_{K, m, p}$

44 The properties of $C_{K, m, p}$ and $T_{K, m, p}$
(5) Zhang's inequality for lower dimensional subspaces

Zhang's inequality for lower dimensional subspaces

- Let $K \in \mathcal{K}^{n}, \xi \in G_{n, m}$, and let $L \in \mathcal{K}_{o}^{m}(\xi)$. For $x \in \xi$, define the restricted plane projection function $A_{K}\left(\|x\|_{L}, \xi\right)$ of K as

$$
\left.A_{K}\left(\|x\|_{L}, \xi\right)=\left\lvert\,\left\{\xi^{\perp} \cap(\xi+y):|K \cap(\xi+y)|^{\frac{1}{m}} \geq\|x\|_{L} \text { for all } y \in \xi^{\perp}\right\}\right. \right\rvert\,
$$

Zhang's inequality for lower dimensional subspaces

- Let $K \in \mathcal{K}^{n}, \xi \in G_{n, m}$, and let $L \in \mathcal{K}_{o}^{m}(\xi)$. For $x \in \xi$, define the restricted plane projection function $A_{K}\left(\|x\|_{L}, \xi\right)$ of K as

$$
\left.A_{K}\left(\|x\|_{L}, \xi\right)=\left\lvert\,\left\{\xi^{\perp} \cap(\xi+y):|K \cap(\xi+y)|^{\frac{1}{m}} \geq\|x\|_{L} \text { for all } y \in \xi^{\perp}\right\}\right. \right\rvert\,
$$

- It is easy to see that $A_{K}\left(\|x\|_{L}, \xi\right)=0$ if $\|x\|_{L}>\sigma(\xi)$ and $\xi^{\perp} \cap(\xi+y)$ is a convex body in ξ^{\perp} if $\|x\|_{L}<\sigma(\xi)$, where

$$
\sigma(\xi)=\max \left\{|K \cap(\xi+y)|^{\frac{1}{m}}: y \in \xi^{\perp}\right\}
$$

Lemma 18

The function $A_{K}\left(\|x\|_{L}, \xi\right)^{\frac{1}{n-m}}$ is concave with respect to the variable $\|x\|_{L}$ on $\Omega:=\left\{\|x\|_{L}: A_{K}\left(\|x\|_{L}, \xi\right) \neq 0\right\}, \quad x \in \xi$.

Zhang's inequality for lower dimensional subspaces

- The case $m=1$ is called the restricted chord projection function introduced by Zhang [Geom. Dedicata 1991].

1. Restricted chord projection of convex bodies

In n-dimensional Euclidean space R^{n}, let K be a convex body and Σ a hyperplane through the origin. Denote by G any straight line intersecting K. For $\sigma \geqslant 0$, define

$$
K_{\Sigma}^{\prime}(\sigma)=\{\Sigma \cap G: \Sigma \perp G,|G \cap K| \geqslant \sigma\} .
$$

$K_{\Sigma}^{\prime}(\sigma)$ is called the restricted chord projection over chord σ of the convex body K on the hyperplane Σ. It can be shown that $K_{\Sigma}^{\prime}(\sigma)$ is convex. Obviously, $K_{\Sigma}^{\prime}(0)$ is the common orthogonal projection.

The ($n-1$)-dimensional volume of $K_{\Sigma}^{\prime}(\sigma)$ in Σ is denoted by $A_{K}(\sigma, u)$, here u is the unit normal vector of $\Sigma, A_{K}(\sigma, u)$ is called the restricted chord projection function of K. It is easy to see that $A_{K}(\sigma, u)=0$ if $\sigma>\sigma(u)$ and $K_{\Sigma}^{\prime}(\sigma)$ is a convex body in Σ if $\sigma<\sigma(u)$, where $\sigma(u)$ is the maximal chord of K in direction u, i.e.

$$
\sigma(u)=\max _{G}\{\sigma: \sigma=|G \cap K|, G \perp \Sigma\} .
$$

Zhang's inequality for lower dimensional subspaces

For $K \in \mathcal{K}^{n}$, let G be a random m-dimensional plane intersecting K defined by, for $\xi \in G_{n, m}$,

$$
G=\left\{\xi+y: K \cap(\xi+y) \neq \emptyset, \quad y \in \xi^{\perp}\right\} .
$$

Denote by $d G$ the density of G under the group of translations. The integral for the power λ of the planes of K is defined as

$$
I_{\lambda, m}(K)=\int_{K \cap G \neq \emptyset}|K \cap G|^{\lambda} d G, \quad \lambda>0 .
$$

See the books [Ren, Santaló]. The well-known Crofton-Hadwiger formula says

$$
I_{n+1,1}(K)=\frac{n(n+1)}{2}|K|^{2} .
$$

Zhang's inequality for lower dimensional subspaces

Lemma 19

Let $K \in \mathcal{K}^{n}, \xi \in G_{n, m}$, and let $L \in \mathcal{K}_{o}^{m}(\xi)$. Then

$$
I_{\lambda, m}(K)=\frac{\lambda\left|G_{n, m}\right|}{m|L|} \int_{G_{n, m}} \int_{\xi}\|x\|_{L}^{\lambda-m} A_{K}\left(\|x\|_{L}, \xi\right) d x d \xi
$$

where

$$
\left|G_{n, m}\right|=\binom{n}{m} \frac{\omega_{n} \cdots \omega_{n-m+1}}{\omega_{m} \cdots \omega_{1}} .
$$

In particular,

$$
\iota_{1, m}(K)=|K|\left|G_{n, m}\right| .
$$

Zhang's inequality for lower dimensional subspaces

By Lemma 18, Lemma 19, and Theorem 1, we have

Theorem 20

Let $K \in \mathcal{K}^{n}, \xi \in G_{n, m}$, and let $L \in \mathcal{K}_{o}^{m}(\xi)$. Then, for $p>m$,
$I_{p, m}(K)$

$$
\begin{equation*}
\leq c_{n, m, p}^{\prime}|L|^{-\frac{p}{m}}\left|G_{n, m}\right| \int_{G_{n, m}} A_{K}(0, \xi)^{\frac{m-p}{m}}\left(\int_{\xi} A_{K}\left(\|x\|_{L}, \xi\right) d x\right)^{\frac{p}{m}} d \xi \tag{4}
\end{equation*}
$$

where $c_{n, m, p}^{\prime}=p m^{-\frac{p}{m}} B(p, n-m+1) B(m, n-m+1)^{-\frac{p}{m}}$. Equality in (4) holds if and only if

$$
\begin{equation*}
\int_{\xi} A_{K}\left(\|x\|_{L}, \xi\right) d x=m|L| \sigma(\xi)^{m} A_{K}(0, \xi) B(m, n-m+1) \tag{5}
\end{equation*}
$$

Zhang's inequality for lower dimensional subspaces

If $p=n+m$, then we have

Theorem 21

Let $K \in \mathcal{K}^{n}, \xi \in G_{n, m}$, and let $L \in \mathcal{K}_{o}^{m}(\xi)$. Then
$I_{n+m, m}(K)$

$$
\begin{equation*}
\leq c_{n, m}^{\prime}|L|^{-\frac{n+m}{m}}\left|G_{n, m}\right| \int_{G_{n, m}} A_{K}(0, \xi)^{-\frac{n}{m}}\left(\int_{\xi} A_{K}\left(\|x\|_{L}, \xi\right) d x\right)^{\frac{n+m}{m}} d \xi \tag{6}
\end{equation*}
$$

where

$$
c_{n, m}^{\prime}=(n+m) m^{-\frac{n+m}{m}} B(n+m, n-m+1) B(m, n-m+1)^{-\frac{n+m}{m}} .
$$

Equality in (6) holds if and only if (5) holds.

Zhang's inequality for lower dimensional subspaces

When $m=1$ and $L=B_{2}^{n}$, the above theorem immediately recovers Zhang's inequality [Geom. Dedicata 1991].

Zhang's inequality
Let $K \in \mathcal{K}^{n}$. Then

$$
|K|\left|\Pi^{*} K\right| \geq \frac{(2 n)!}{n^{n}(n!)^{2}},
$$

with equality if and only if K is a simplex.

Thanks for your attention!

